1 |
WANG C X, YOU X H, GAO X Q, et al. On the road to 6G: visions, requirements, key technologies, and testbeds [J]. IEEE communications surveys and tutorials, 2023, 25(2): 905–974. DOI: 10.1109/COMST.2023.3249835
|
2 |
SHAHID A, KLIKS A, AL-TAHMEESSCHI A, et al. Large-scale AI in telecom: charting the roadmap for innovation, scalability, and enhanced digital experiences [EB/OL]. [2025-02-16].
|
3 |
O’SHEA T, HOYDIS J. An introduction to deep learning for the physical layer [J]. IEEE transactions on cognitive communications and networking, 2017, 3(4): 563–575. DOI: 10.1109/TCCN.2017.2758370
|
4 |
ZHU F H, WANG X Q, HUANG C W, et al. Beamforming inferring by conditional WGAN-GP for holographic antenna arrays [J]. IEEE wireless communications letters, 2024, 13(7): 2023–2027. DOI: 10.1109/LWC.2024.3402102
|
5 |
DAI L L, JIAO R C, ADACHI F, et al. Deep learning for wireless communications: an emerging interdisciplinary paradigm [J]. IEEE wireless communications, 2020, 27(4): 133–139. DOI: 10.1109/MWC.001.1900491
|
6 |
ZHU F H, WANG X Q, HUANG C W, et al. Robust beamforming for RIS-aided communications: gradient-based manifold meta learning [J]. IEEE transactions on wireless communications, 2024, 23(11): 15945–15956. DOI: 10.1109/TWC.2024.3435023
|
7 |
WANG T H, XIAO W, SEYDE T, et al. Measuring interpretability of neural policies of robots with disentangled representation [EB/OL]. (2023-12-11) [2025-02-16].
|
8 |
JIANG W, HAN B, HABIBI A M, et al. The road towards 6G: a comprehensive survey [J]. IEEE open journal of the Communications Society, 2021, 2: 334–366. DOI: 10.1109/OJCOMS.2021.3057679
|
9 |
ZHU F H, WANG B H, YANG Z H, et al. Robust millimeter beamforming via self-supervised hybrid deep learning [C]//The 31st European Signal Processing Conference (EUSIPCO). IEEE, 2023: 915–919. DOI: 10.23919/EUSIPCO58844.2023.10289989
|
10 |
HASANI R, LECHNER M, AMINI A, et al. Liquid time-constant networks [J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(9): 7657–7666. DOI: 10.1609/aaai.v35i9.16936
|
11 |
LECHNER M, HASANI R, AMINI A, et al. Neural circuit policies enabling auditable autonomy [J]. Nature machine intelligence, 2020, 2(10): 642–652. DOI: 10.1038/s42256-020-00237-3
|
12 |
HASANI R, LECHNER M, AMINI A. Closed-form continuous-time neural networks [J]. Nature machine intelligence, 2022, 4(11): 992–1003. DOI: 10.1038/s42256-022-00556-7
|
13 |
ELDAN R, SHAMIR O. The power of depth for feedforward neural networks [C]//The 29th Annual Conference on Learning Theory. PMLR, 2016: 907–940
|
14 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]//The 26th International Conference on Neural Information Processing Systems. ACM, 2012: 1097–1105. DOI: 10.1145/3065386
|
15 |
YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural computation, 2019, 31(7): 1235–1270. DOI: 10.1162/neco_a_01199
|
16 |
MA K, ZHANG F, TIAN W Q, et al. Continuous-time mmWave beam prediction with ODE-LSTM learning architecture [J]. IEEE wireless communications letters, 2023, 12(1): 187–191. DOI: 10.1109/LWC.2022.3221159
|
17 |
CHEN R T, RUBANOVA Y, BETTENCOURT J, et al. Neural ordinary differential equations [C]//The 32nd International Conference on Neural Information Processing Systems. ACM, 2018: 6572–6583
|
18 |
CHAHINE M, HASANI R, KAO P, et al. Robust flight navigation out of distribution with liquid neural networks [J]. Science robotics, 2023, 8(77): eadc8892. DOI: 10.1126/scirobotics.adc8892
|
19 |
WANG X Q, ZHU F H, ZHOU Q Y, et al. Energy-efficient beamforming for RISs-aided communications: gradient based meta learning [C]//International Conference on Communications. IEEE, 2024: 3464–3469. DOI: 10.1109/ICC51166.2024.10622978
|
20 |
ZHU F H, WANG X Q, HUANG C W, et al. Robust continuous-time beam tracking with liquid neural network [C]//IEEE Global Communications Conference. IEEE, 2024: 4878–4883. DOI: 10.1109/GLOBECOM52923.2024.10900942
|
21 |
WEI Z Q, ZHANG Y J, JI D N, et al. Sensing and communication integrated fast neighbor discovery for UAV networks [J]. ZTE Communications, 2024, 22(3): 69–82. DOI: 10.12142/ZTECOM.202403009
|
22 |
DU R L, WEI Z Q, YANG Z. Integrated sensing and communication: who benefits more? [J]. ZTE Communications, 2024, 22(3): 37–47. DOI: 10.12142/ZTECOM.202403006
|
23 |
WANG B H, ZHU F H, LIU M B, et al. Multi-sources information fusion learning for multi-points NLOS localization [C]//The 99th Vehicular Technology Conference (VTC2024-Spring). IEEE, 2024: 1–6. DOI: 10.1109/VTC2024-Spring62846.2024.10683036
|
24 |
YIN H, ZHOU Y H, CAO L, et al. Channel prediction with liquid time-constant networks: an online and adaptive approach [C]//The 94th Vehicular Technology Conference (VTC2021-Fall). IEEE, 2021: 1–6. DOI: 10.1109/vtc2021-fall52928.2021.9625323
|
25 |
WANG X Q, ZHU F H, HUANG C W, et al. Robust beamforming with gradient-based liquid neural network [J]. IEEE wireless communications letters, 2024, 13(11): 3020–3024. DOI: 10.1109/lwc.2024.3436576
|