ZTE Communications ›› 2022, Vol. 20 ›› Issue (4): 78-88.DOI: 10.12142/ZTECOM.202204010
• Research Paper • Previous Articles Next Articles
LI Zonghui1, YANG Siqi1, YU Jinghai2(), HE Fei3, SHI Qingjiang4,5
Received:
2022-01-04
Online:
2022-12-31
Published:
2022-12-30
About author:
LI Zonghui received his BS degree in computer science from Beijing Information Science and Technology University, China in 2010, and MS and PhD degrees from the Institute of Microelectronics and the School of Software, Tsinghua University, China in 2014 and 2019, respectively. He is currently an associate professor in the School of Computer and Information Technology, Beijing Jiaotong University, China. His research interests include embedded and high performance computing, real-time embedded systems, especially for industrial control networks and time-sensitive networking.|YANG Siqi received her BS degree in network engineering from Hebei University, China. She is currently working toward her master’s degree at Beijing Jiaotong University, China. Her research interest is real-time networks.|YU Jinghai (LI Zonghui, YANG Siqi, YU Jinghai, HE Fei, SHI Qingjiang. Predictive Scheme for Mixed Transmission in Time-Sensitive Networking[J]. ZTE Communications, 2022, 20(4): 78-88.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202204010
X Distribution Within the Range of Length [64, 1 518] | RemainedTimeLoss/byte | Guardloss/byte |
---|---|---|
Uniform distribution | 395.5 | 1 122.5 |
Binomial distribution | 363.75 | 1 154.2 |
Poisson distribution | 395.5 | 1 122.5 |
Normal distribution | 395.75 | 1 122.3 |
Table 1 Expected bandwidth loss: the remaining time transmission strategy (RemainedTimeLoss) vs the guard band strategy (Guardloss) of 802.1QBV
X Distribution Within the Range of Length [64, 1 518] | RemainedTimeLoss/byte | Guardloss/byte |
---|---|---|
Uniform distribution | 395.5 | 1 122.5 |
Binomial distribution | 363.75 | 1 154.2 |
Poisson distribution | 395.5 | 1 122.5 |
Normal distribution | 395.75 | 1 122.3 |
X Distribution Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte | Reduced Rate/byte |
---|---|---|---|
Uniform distribution | 29.08 | 131.43 | 77.87% |
Binomial distribution | 27.31 | 135.96 | 79.91% |
Poisson distribution | 27.05 | 136.52 | 80.19% |
Normal distribution | 27.28 | 136.01 | 79.94% |
Table 2 Expected bandwidth loss: the optimal preemption strategy (OPLoss) vs the mixed strategy (MixedLoss) of the guard band and the frame preemption
X Distribution Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte | Reduced Rate/byte |
---|---|---|---|
Uniform distribution | 29.08 | 131.43 | 77.87% |
Binomial distribution | 27.31 | 135.96 | 79.91% |
Poisson distribution | 27.05 | 136.52 | 80.19% |
Normal distribution | 27.28 | 136.01 | 79.94% |
Figure 7 Comparison of the expected bandwidth loss between the optimal preemption strategy (OPLoss) and the mixed strategy (MixedLoss) of the guard band and the frame preemption
Uniform Distribution Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 1.93 | 3.14 |
X ≥ 124, Y < 60 | 3.04 | 11.61 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 17.89 | 106.61 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 6.22 | 10.07 |
Table 3 Expected bandwidth loss of each part: the optimal preemption strategy (OPLoss) vs the mixed strategy (MixedLoss) in Uniform distribution
Uniform Distribution Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 1.93 | 3.14 |
X ≥ 124, Y < 60 | 3.04 | 11.61 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 17.89 | 106.61 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 6.22 | 10.07 |
Binomial Distribution (p=0.5) Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 0 | 0 |
X ≥ 124, Y < 60 | 2.43 | 9.27 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 19.91 | 118.64 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 4.97 | 8.04 |
Table 4 Expected bandwidth loss of each part: the optimal preemption strategy (OPLoss) vs the mixed strategy (MixedLoss ) in Binomial distribution
Binomial Distribution (p=0.5) Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 0 | 0 |
X ≥ 124, Y < 60 | 2.43 | 9.27 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 19.91 | 118.64 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 4.97 | 8.04 |
Poisson Distribution Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 0 | 0 |
X ≥ 124, Y < 60 | 2.24 | 8.53 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 20.24 | 120.58 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 4.57 | 7.4 |
Table 5 Expected bandwidth loss of each part: the optimal preemption strategy (OPLoss) vs the mixed strategy (MixedLoss) in poisson distribution
Poisson Distribution Within the Range of Length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 0 | 0 |
X ≥ 124, Y < 60 | 2.24 | 8.53 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 20.24 | 120.58 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 4.57 | 7.4 |
Normal distribution within the range of length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 0.016 | 0.028 9 |
X ≥ 124, Y < 60 | 2.41 | 9.18 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 19.94 | 118.83 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 4.92 | 7.96 |
Table 6 Expected bandwidth loss of each part: the optimal preemption strategy (OPLoss) vs the mixed strategy (MixedLoss) in normal distribution
Normal distribution within the range of length [64, 1 518] | OPLoss/byte | MixedLoss/byte |
---|---|---|
X < 124 | 0.016 | 0.028 9 |
X ≥ 124, Y < 60 | 2.41 | 9.18 |
X ≥ 124, Y ≥ 60, X - Y ≥ 64 | 19.94 | 118.83 |
X ≥ 124, Y ≥ 60, X - Y < 64 | 4.92 | 7.96 |
1 | HERMANN M, PENTEK T, OTTO B. Design principles for industrie 4.0 scenarios [C]//The 49th Hawaii International Conference on System Sciences. IEEE, 2016: 3928–3937 |
2 | ISO. Road vehicles: controller area network (CAN) (part 2): high-speed medium access unit. [S]. 2016 |
3 | International Electrotechnical Commission. Electric railway equipment: Train bus (Part 2): train communication network conformance testing. [S]. 2007 |
4 |
DECOTIGNIE J D. Ethernet-based real-time and industrial communications [J]. Proceedings of the IEEE, 2005, 93(6): 1102–1117. DOI: 10.1109/JPROC.2005.849721
DOI |
5 |
BELLO L LO, STEINER W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems [J]. Proceedings of the IEEE, 2019, 107(6): 1094–1120. DOI: 10.1109/JPROC.2019.2905334
DOI |
6 | International Group SAE. Time-triggered Ethernet. Aerospace standard: AS6802 [S]. 2011 |
7 | International Group SAE. TTP Communication Protocol. Aerospace standard: AS6003 [S]. 2011 |
8 |
STEINER W. An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks [C]//The 31st IEEE Real-Time Systems Symposium. IEEE, 2010: 375–384. DOI: 10.1109/RTSS.2010.25
DOI |
9 | IEEE. Standard for a precision clock synchronization protocol for networked measurement and control systems. IEEE std 1588-2002 [S]. 2002. DOI: 10.1109/IEEES |
10 | IEEE. IEEE standard for local and metropolitan area networks-timing and synchronization for time-sensitive applications in bridged local area networks. IEEE std 802 1AS-2011 [S]. 2011 |
11 |
LI Z H, WAN H, DENG Y D, et al. A flattened-priority framework for mixed-criticality systems [J]. IEEE transactions on industrial electronics, 2020, 67(11): 9862–9872. DOI: 10.1109/TIE.2019.2956406
DOI |
12 |
LI Z H, WAN H, DENG Y D, et al. A resource-efficient priority scheduler for time-sensitive networking switches [J]. CCF transactions on networking, 2020, 3(1): 21–34. DOI: 10.1007/s42045-020-00034-x
DOI |
13 | IEEE. IEEE standard for local and metropolitan area networks-audio video bridging (AVB) systems [S]. 2011 |
14 | IEEE. IEEE standard for local and metropolitan area networks-virtual bridged local area networks amendment 12: Forwarding and queuing enhancements for time-sensitive streams. IEEE std 802 1Qav-2009 [S]. 2010 |
15 | IEEE. IEEE standard for local and metropolitan area networks-bridges and bridged networks-amendment 25: Enhancements for scheduled traffic. IEEE Std 802.1 [S]. 2011 |
16 | IEEE. IEEE standard for local and metropolitan area networks: bridges and bridged networks: amendment 26: frame preemption. IEEE std 802 1Qbu-2016 [S]. 2016 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||