ZTE Communications ›› 2022, Vol. 20 ›› Issue (4): 69-77.DOI: 10.12142/ZTECOM.202204009
• Research Paper • Previous Articles Next Articles
JIA Haonan1, HE Zhenqing1(), TAN Wanlong1, RUI Hua2,3, LIN Wei2,3
Received:
2022-02-24
Online:
2022-12-31
Published:
2022-12-30
About author:
JIA Haonan received his BS and MS degrees in communication engineering from the University of Electronic Science and Technology of China, in 2019 and 2022, respectively. His research interests focus on deep learning with application to wireless communications.|HE Zhenqing (Supported by:
JIA Haonan, HE Zhenqing, TAN Wanlong, RUI Hua, LIN Wei. Distributed Multi-Cell Multi-User MISO Downlink Beamforming via Deep Reinforcement Learning[J]. ZTE Communications, 2022, 20(4): 69-77.
Schemes | Required Information | Information Exchange |
---|---|---|
MADDPG | ||
FP[ | ||
ZG[ | ||
MRT/ZF[ | 0 |
Table 1 Comparison of the information exchange
Schemes | Required Information | Information Exchange |
---|---|---|
MADDPG | ||
FP[ | ||
ZG[ | ||
MRT/ZF[ | 0 |
Figure 5 Convergence behavior of the proposed multi-agent deep deterministic policy gradient (MADDPG) algorithm under different initialization of network weights
Figure 6 Average achievable rate of various schemes versus the number of time slots, where each point is a moving average over the previous 300-time slots with the UE distribution factor ?= 0.3
1 |
SOMEKH O, SIMEONE O, BAR-NESS Y, et al. Cooperative multicell zero-forcing beamforming in cellular downlink channels [J]. IEEE transactions on information theory, 2009, 55(7): 3206–3219. DOI: 10.1109/TIT.2009.2021371
DOI |
2 |
HUANG Y M, ZHENG G, BENGTSSON M, et al. Distributed multicell beamforming with limited intercell coordination [J]. IEEE transactions on signal processing, 2011, 59(2): 728–738. DOI: 10.1109/TSP.2010.2089621
DOI |
3 |
SHEN K M, YU W. Fractional programming for communication systems—part I: power control and beamforming [J]. IEEE transactions on signal processing, 2018, 66(10): 2616–2630. DOI: 10.1109/TSP.2018.2812733
DOI |
4 |
ZHANG R, CUI S G. Cooperative interference management with MISO beamforming [J]. IEEE transactions on signal processing, 2010, 58(10): 5450–5458. DOI: 10.1109/TSP.2010.2056685
DOI |
5 |
BJÖRNSON E, ZAKHOUR R, GESBERT D, et al. Cooperative multicell precoding: rate region characterization and distributed strategies with instantaneous and statistical CSI [J]. IEEE transactions on signal processing, 2010, 58(8): 4298–4310. DOI: 10.1109/TSP.2010.2049996
DOI |
6 |
PARK S H, PARK H, LEE I. Distributed beamforming techniques for weighted sum-rate maximization in MISO interference channels [J]. IEEE communications letters, 2010, 14(12): 1131–1133. DOI: 10.1109/LCOMM.2010.12.101635
DOI |
7 |
GE J G, LIANG Y C, JOUNG J, et al. Deep reinforcement learning for distributed dynamic MISO downlink-beamforming coordination [J]. IEEE transactions on communications, 2020, 68(10): 6070–6085. DOI: 10.1109/TCOMM.2020.3004524
DOI |
8 |
KHAN A A, ADVE R S. Centralized and distributed deep reinforcement learning methods for downlink sum-rate optimization [J]. IEEE transactions on wireless communications, 2020, 19(12): 8410–8426. DOI: 10.1109/TWC.2020.3022705
DOI |
9 | INDYK P, MOTWANI R. Approximate nearest neighbors: towards removing the curse of dimensionality [C]//The Thirtieth Annual ACM Symposium on Theory of Computing. STOC, 1998: 604–613 |
10 |
YING D W, VOOK F W, THOMAS T A, et al. Kronecker product correlation model and limited feedback codebook design in a 3D channel model [C]//Proceedings of 2014 IEEE International Conference on Communications. IEEE, 2014: 5865–5870. DOI: 10.1109/ICC.2014.6884258
DOI |
11 |
DONG M, TONG L, SADLER B M. Optimal insertion of pilot symbols for transmissions over time-varying flat fading channels [J]. IEEE transactions on signal processing, 2004, 52(5): 1403–1418. DOI: 10.1109/TSP.2004.826182
DOI |
12 |
SCHUBERT M, BOCHE H. Solution of the multiuser downlink beamforming problem with individual SINR constraints [J]. IEEE transactions on vehicular technology, 2004, 53(1): 18–28. DOI: 10.1109/TVT.2003.819629
DOI |
13 |
CHRISTENSEN S S, AGARWAL R, DE CARVALHO E, et al. Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design [J]. IEEE transactions on wireless communications, 2008, 7(12): 4792–4799. DOI: 10.1109/T-WC.2008.070851
DOI |
14 |
JORSWIECK E A, LARSSON E G, DANEV D. Complete characterization of the Pareto boundary for the MISO interference channel [J]. IEEE transactions on signal processing, 2008, 56(10): 5292–5296. DOI: 10.1109/TSP.2008.928095
DOI |
15 |
LIM Y G, CHAE C B, CAIRE G. Performance analysis of massive MIMO for cell-boundary users [J]. IEEE transactions on wireless communications, 2015, 14(12): 6827–6842. DOI: 10.1109/TWC.2015.2460751
DOI |
16 |
MENG F, CHEN P, WU L N, et al. Power allocation in multi-user cellular networks: deep reinforcement learning approaches [J]. IEEE transactions on wireless communications, 2020, 19(10): 6255–6267. DOI: 10.1109/TWC.2020.3001736
DOI |
17 |
HESTER T, VECERIK M, PIETQUIN O, et al. Deep Q-learning from demonstrations [EB/OL]. [2022-02-02]. . DOI: 10.1609/aaai.v32i1.11757
DOI URL |
18 |
DONG S K, CHEN J R, LIU Y, et al. Reinforcement learning from algorithm model to industry innovation : a foundation stone of future artificial intelligence [J]. ZTE communications, 2019, 17(3): 31–41. DOI: 10.12142/Z TECOM.201903006
DOI |
19 | SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms [C]//Proceeding of International Conference on Machine Learning. ICML, 2014: 387–395 |
[1] | REN Min, XU Renyu, ZHU Ting. Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface [J]. ZTE Communications, 2023, 21(3): 3-10. |
[2] | YOU Qian, XU Qian, YANG Xin, ZHANG Tao, CHEN Ming. RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning [J]. ZTE Communications, 2023, 21(2): 61-69. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||