1 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149. DOI: 10.1109/tpami.2016.2577031
|
2 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [EB/OL]. (2016-05-09)[2023-08-20].
|
3 |
LAW H, DENG J. CornerNet: detecting objects as paired keypoints [J]. International journal of computer vision, 2020, 128(3): 642–656. DOI: 10.1007/s11263-019-01204-1
|
4 |
SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud [EB/OL]. (2019-05-16)[2023-08-21].
|
5 |
CHEN Y K, LIU J H, ZHANG X Y, et al. VoxelNeXt: fully sparse VoxelNet for 3D object detection and tracking [EB/OL]. (203-03-20)[2023-08-21].
|
6 |
YANG Z T, SUN Y N, LIU S, et al. STD: sparse-to-dense 3D object detector for point cloud [EB/OL]. (2019-07-22)[2023-08-21].
|
7 |
PHILION J, Lift FIDLER S., splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D [C]//European Conference on Computer Vision. Springer, 2020: 194–210.10.1007/978-3-030-58568-6_12
|
8 |
YIN T W, ZHOU X Y, KRÄHENBÜHL P. Center-based 3D object detection and tracking [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021: 11779–11788. DOI: 10.1109/CVPR46437.2021.01161
|
9 |
KLASING K, WOLLHERR D, BUSS M. A clustering method for efficient segmentation of 3D laser data [C]//2008 IEEE International Conference on Robotics and Automation. IEEE, 2008: 4043–4048. DOI: 10.1109/ROBOT.2008.4543832
|
10 |
KLASING K, WOLLHERR D, BUSS M. Realtime segmentation of range data using continuous nearest neighbors [C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 2431–2436. DOI: 10.1109/ROBOT.2009.5152498
|
11 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 77–85. DOI: 10.1109/CVPR.2017.16
|
12 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [EB/OL]. (2017-06-07)[2020-08-21].
|
13 |
HUANG J J, HUANG G, ZHU Z, et al. BEVDet: high-performance multi-camera 3D object detection in bird-eye-view [EB/OL]. (2022-06-16)[2023-08-21].
|
14 |
LI Z Q, WANG W H, LI H Y, et al. Bevformer: learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers [EB/OL]. (2022-07-13)[2023-08-21].
|
15 |
LI Y H, GE Z, YU G Y, et al. BEVDepth: acquisition of reliable depth for multi-view 3D object detection [EB/OL]. (2022-11-30)[2023-08-21].
|
16 |
LIU Z J, TANG H T, AMINI A, et al. BEVFusion: Multi-task multi-sensor fusion with unified bird's-eye view representation [EB/OL]. (2022-06-16)[2023-08-21].
|
17 |
WANG R H, QIN J, LI K Y, et al. BEV-LaneDet: a simple and effective 3D lane detection baseline [EB/OL]. (203-03-11)[2023-08-21].
|
18 |
DONG Y P, KANG C X, ZHANG J L. Benchmarking robustness of 3D object detection to common corruptions in autonomous driving [EB/OL]. (2023-03-20)[2023-08-21].
|
19 |
QI C R, LITANY O, HE K M, et al. Deep hough voting for 3D object detection in point clouds [EB/OL]. (2019-08-22)[2023-08-21].
|
20 |
HE Y S, SUN W, HUANG H B, et al. PVN 3D: point-wiseadeep 3D keypoints voting network for 6DoF pose estimation [EB/OL]. (2020-03-24)[2023-08-21].
|
21 |
ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 4490–4499. DOI: 10.1109/CVPR.2018.00472
|
22 |
YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection [J]. Sensors, 2018, 18(10): 3337. DOI: 10.3390/s18103337
|
23 |
SIMON M, AMENDE K, KRAUS A, et al. Complexer-YOLO: real-time 3D object detection and tracking on semantic point clouds [EB/OL]. (2019-04-16)[2023-08-21].
|
24 |
LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds [EB/OL]. (2020-03-24)[2023-08-21].
|
25 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149. DOI: 10.1109/TPAMI.2016.2577031
|
26 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving [EB/OL]. (2020-05-05)[2023-08-21].
|
27 |
YIN T W, ZHOU X Y, KRÄHENBÜHL P. Center-based 3D object detection and tracking [EB/OL]. (2021-01-06)[2023-08-21].
|
28 |
FAN L, WANG F, WANG N Y, et al. Fully sparse 3D object detection [EB/OL]. (2022-10-03)[2023-08-21].
|
29 |
ZHOU C, ZHANG Y N, CHEN J X, et al. OcTr: octree-based transformer for 3D object detection [EB/OL]. (2023-03-22)[2023-08-21].
|
30 |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset [EB/OL]. (2023-03-22)[2023-08-21].
|
31 |
GEIGER A, LENZ P, URTASUN R, et al. Are we ready for autonomous driving? The KITTI vision benchmark suite [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012. DOI: 10.1109/CVPR.2012.6248074
|
32 |
YANG Z T, SUN Y N, LIU S, et al. 3DSSD: point-based 3D single stage object detector [EB/OL]. (2020-02-24)[2023-08-21].
|
33 |
SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 770–779. DOI: 10.1109/CVPR.2019.00086
|
34 |
QI C R, LIU W, WU C X, et al. Frustum PointNets for 3D object detection from RGB-D data [EB/OL]. (2018-04-13)[2023-08-21].
|
35 |
CHEN Y L, LIU S, SHEN X Y, et al. Fast point R-CNN [EB/OL]. (2019-08-16)[2023-08-21].
|
36 |
YANG Z T, SUN Y N, LIU S, et al. 3DSSD: point-based 3D single stage object detector [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 11037–11045. DOI: 10.1109/CVPR42600.2020.01105
|
37 |
YANG Z T, SUN Y N, LIU S, et al. IPOD: intensive point-based object detector for point cloud [EB/OL]. (2018-12-13)[2023-08-21].
|
38 |
YANG Z T, SUN Y N, LIU S, et al. STD: sparse-to-dense 3D object detector for point cloud [C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020: 1951–1960. DOI: 10.1109/ICCV.2019.00204
|
39 |
SHI S S, GUO C X, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection [EB/OL]. (2021-04-09)[2023-08-21].
|
40 |
YOU Y R, WANG Y, CHAO W-L, et al. Pseudo-lidar++: accurate depth for 3d object detection in autonomous driving [EB/OL]. (2020-02-15)[2023-08-21].
|
41 |
HE C H, ZENG H, HUANG J Q, et al. Structure aware single-stage 3D object detection from point cloud [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 11870–11879. DOI: 10.1109/CVPR42600.2020.01189
|
42 |
SHI W J. Point-GNN: graph neural network for 3D object detection in a point cloud [EB/OL]. (2020-03-02)[2023-08-21].
|
43 |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model [J]. IEEE transactions on neural networks, 2009, 20(1): 61–80. DOI: 10.1109/tnn.2008.2005605
|
44 |
KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation [C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). ACM, 2018: 1–8. DOI: 10.1109/IROS.2018.8594049
|
45 |
LIANG M, YANG B, CHEN Y, et al. Multi-task multi-sensor fusion for 3D object detection [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 7337–7345. DOI: 10.1109/CVPR.2019.00752
|