1 |
PAN S J, YANG Q. A survey on transfer learning [J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345–1359. DOI: 10.1109/TKDE.2009.191
DOI
|
2 |
GONG B Q, GRAUMAN K, SHA F. Connecting the dots with landmarks: discriminatively learning domain⁃invariant features for unsupervised domain adaptation [C]//30th International Conference on International Conference on Machine Learning. Atlanta, USA: Curran Associates, 2013: 222–230
|
3 |
DUAN L X, TSANG I W, XU D. Domain transfer multiple kernel learning [J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(3): 465–479. DOI: 10.1109/TPAMI.2011.114
DOI
|
4 |
TAN B, ZHANG Y, PAN S J, et al. Distant domain transfer learning [C]//31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press, 2017: 2604–2610
|
5 |
CHANG W⁃C, WU Y X, LIU H X, et al. Cross⁃domain kernel induction for transfer learning [C]//31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press, 2017: 1763–1769
|
6 |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis [J]. IEEE transactions on neural networks, 2011, 22(2): 199–210. DOI: 10.1109/TNN.2010.2091281
DOI
|
7 |
GRETTON A, BORGWARDT K M, RASCH M, et al. A kernel method for the two⁃sample⁃problem [C]//19th International Conference on Neural Information Processing Systems. Kitakyushu, Japan: Springer, 2007: 513–520
|
8 |
LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2200–2207. DOI: 10.1109/ICCV.2013.274
DOI
|
9 |
LONG M S, WANG J M, DING G G, et al. Transfer joint matching for unsupervised domain adaptation [C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 1410–1417. DOI: 10.1109/CVPR.2014.183
DOI
|
10 |
BAKTASHMOTLAGH M, HARANDI M T, LOVELL B C, et al. Unsupervised domain adaptation by domain invariant projection [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 769–776. DOI: 10.1109/ICCV.2013.100
DOI
|
11 |
LI S, SONG S J, HUANG G, et al. Domain invariant and class‑discriminative feature learning for visual domain adaptation [J]. IEEE transactions on image processing, 2018, 27(9): 4260–4273. DOI: 10.1109/TIP.2018.2839528
DOI
|
12 |
SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering [EB/OL]. (2015⁃03⁃12)[2018⁃01⁃01].
|
13 |
XIAO Q Q, LUO H, ZHANG C. Margin sample mining loss: a deep learning based method for person Re⁃identification [EB/OL]. (2017⁃10⁃02)[2018⁃01⁃01].
|
14 |
LI X Y, HERRANZ L, JIANG S Q. Multifaceted analysis of fine⁃tuning in a deep model for visual recognition [J]. IMS transactions on data science, 2020, 1(1): 1–22. DOI: 10.1145/3319500
DOI
|
15 |
SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains [C]//11th European Conference on Computer Vision. Heraklion, Greece: IEEE, 2010: 213–226
|
16 |
SIM T, BAKER S, BSAT M, pose The CMU, illumination, and expression (PIE) database [C]//Fifth IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA: IEEE, 2002. DOI: 10.1109/AFGR.2002.1004130
DOI
|
17 |
FUKUNAGA K, NARENDRA P M. A branch and bound algorithm for computing k⁃nearest neighbors [J]. IEEE transactions on computers, 1975, C⁃24(7): 750–753. DOI: 10.1109/T-C.1975.224297
DOI
|
18 |
JOLLIFFE I T. Principal component analysis [M]. New York, USA: Springer⁃Verlag, 2011: 1094–1096. DOI: 10.1007/b98835
DOI
|
19 |
GONG B, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation [C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012: 2066–2073
|
20 |
FERNANDO B, HABRARD A, SEBBAN M, et al. Unsupervised visual domain adaptation using subspace alignment [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2960–2967. DOI: 10.1109/ICCV.2013.368
DOI
|
21 |
XU Y, FANG X Z, WU J, et al. Discriminative transfer subspace learning via low⁃rank and sparse representation [J]. IEEE transactions on image processing, 2016, 25(2): 850–863. DOI: 10.1109/TIP.2015.2510498
DOI
|