ZTE Communications ›› 2020, Vol. 18 ›› Issue (4): 69-77.DOI: 10.12142/ZTECOM.202004010
• Research Paper • Previous Articles Next Articles
FAN Guotian1(), LI Bo2, HAN Qin2, JIAO Rihua2, QU Gang2
Received:
2019-03-19
Online:
2020-12-25
Published:
2021-01-13
About author:
FAN Guotian (FAN Guotian, LI Bo, HAN Qin, JIAO Rihua, QU Gang. Robust Lane Detection and Tracking Based on Machine Vision[J]. ZTE Communications, 2020, 18(4): 69-77.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202004010
Condition | Total Frame | Detected Frame | Detection Rate |
---|---|---|---|
Data sequence 1 | 504 | 503 | 99.80% |
Data sequence 2 | 835 | 817 | 97.84% |
Data sequence 3 | 2 100 | 2 064 | 98.28% |
Data sequence 4 | 6 633 | 6 235 | 94.28% |
Table 1 Lane Detection Results
Condition | Total Frame | Detected Frame | Detection Rate |
---|---|---|---|
Data sequence 1 | 504 | 503 | 99.80% |
Data sequence 2 | 835 | 817 | 97.84% |
Data sequence 3 | 2 100 | 2 064 | 98.28% |
Data sequence 4 | 6 633 | 6 235 | 94.28% |
Method | Total Frame | Detected Frame | Detection Rate |
---|---|---|---|
HALOI[ | 600 | 565 | 94.26% |
Our method | 600 | 568 | 94.83% |
Table 2 Performance for KITTI Dataset
Method | Total Frame | Detected Frame | Detection Rate |
---|---|---|---|
HALOI[ | 600 | 565 | 94.26% |
Our method | 600 | 568 | 94.83% |
1 |
JUNG S, YOUN J, SULL S. Efficient lane detection based on spatiotemporal images [J]. IEEE transactions on intelligent transportation systems, 2016, 17(1): 289-295. DOI:10.1109/tits.2015.2464253
DOI |
2 |
CHEN H Z, JIN Z L. Research on real‑time lane line detection techonogy based on machine vision [C]//2010 International Symposium on Intelligence Information Processing and Trusted Computing. Huanggang, China, 2010: 528–531. DOI:10.1109/iptc.2010.124
DOI |
3 |
DU X X, TAN K K, HTET K K K. Vision‑based lane line detection for autonomous vehicle navigation and guidance [C]//2015 10th Asian Control Conference (ASCC). Kota Kinabalu. Malaysia, 2015: 1–5. DOI:10.1109/ascc.2015.7244831
DOI |
4 |
DU X X, TAN K K. Comprehensive and practical vision system for self-driving vehicle lane‑level localization [J]. IEEE transactions on image processing, 2016, 25(5): 2075-2088. DOI:10.1109/tip.2016.2539683
DOI |
5 |
HE Y, WANG H, ZHANG B. Color‑based road detection in urban traffic scenes [J]. IEEE transactions on intelligent transportation systems, 2004, 5(4): 309-318. DOI:10.1109/tits.2004.838221
DOI |
6 |
SUN T Y, TSAI S J, CHAN V. HSI color model based lane‑marking detection [C]//2006 IEEE Intelligent Transportation Systems Conference. Toronto, Canada: IEEE, 2006: 1168–1172. DOI:10.1109/itsc.2006.1707380
DOI |
7 |
CHENG H Y, JENG B S, TSENG P T, et al. Lane detection with moving vehicles in the traffic scenes [J]. IEEE transactions on intelligent transportation systems, 2006, 7(4): 571-582. DOI:10.1109/tits.2006.883940
DOI |
8 |
YOO J H, LEE S W, PARK S K, et al. A robust lane detection method based on vanishing point estimation using the relevance of line segments [J]. IEEE transactions on intelligent transportation systems, 2017, 18(12): 3254-3266. DOI:10.1109/tits.2017.2679222
DOI |
9 |
BORKAR A, HAYES M, SMITH M T. Polar randomized Hough transform for lane detection using loose constraints of parallel lines [C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011: 1037–1040. DOI:10.1109/icassp.2011.5946584
DOI |
10 |
LIU Z Q, WANG S J, DING X Q. ROI perspective transform based road marking detection and recognition [C]//2012 International Conference on Audio, Language and Image Processing. Shanghai, China, 2012: 841–846. DOI:10.1109/icalip.2012.6376731
DOI |
11 |
DENG J Y, HAN Y. A real‑time system of lane detection and tracking based on optimized RANSAC B‑spline fitting [C]//Proceedings of the 2013 Research in Adaptive and Convergent Systems. Montreal, Canada, 2013: 23–26. DOI:10.1145/2513228.2513280
DOI |
12 |
KIM D U, PARK S H, BAN J H, et al. Vision‑based autonomous detection of lane and pedestrians [C]//2016 IEEE International Conference on Signal and Image Processing (ICSIP). Beijing, China: IEEE, 2016: 680-683. DOI:10.1109/siprocess.2016.7888349
DOI |
13 |
LI W H, GONG X H, WANG Y, et al. A lane marking detection and tracking algorithm based on sub‑regions [C]//2014 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS). Qingdao, China, 2014: 68–73. DOI:10.1109/iccss.2014.6961818
DOI |
14 |
YOO H, YANG U, SOHN K. Gradient‑enhancing conversion for illumination-robust lane detection [J]. IEEE transactions on intelligent transportation systems, 2013, 14(3): 1083-1094. DOI:10.1109/tits.2013.2252427
DOI |
15 |
HALOI M, JAYAGOPI D B. A robust lane detection and departure warning system [C]//2015 IEEE Intelligent Vehicles Symposium (IV). Seoul, South Korea: IEEE, 2015: 126–131. DOI:10.1109/ivs.2015.7225674
DOI |
16 |
HARALICK R M, STERNBERG S R, ZHUANG X H. Image analysis using mathematical morphology [J]. IEEE transactions on pattern analysis and machine intelligence, 1987, PAMI‑9(4): 532-550. DOI:10.1109/tpami.1987.4767941
DOI |
17 |
CARIO G, CASAVOLA A, LUPIA M. Lane detection and tracking problems in lane departure warning systems: computer vision and imaging in intelligent transportation systems [M]. Chichester, UK:John Wiley & Sons, 2017: 283-303. DOI:10.1002/9781118971666.ch11
DOI |
18 |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset [J]. The international journal of robotics research, 2013, 32(11): 1231-1237. DOI:10.1177/0278364913491297
DOI |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||