ZTE Communications ›› 2020, Vol. 18 ›› Issue (3): 12-19.DOI: 10.12142/ZTECOM.202003003
• Special Topic • Previous Articles Next Articles
YE Lianghua1(), CAO Yunfei2, ZHANG Xiuyin2
Received:
2020-08-06
Online:
2020-09-25
Published:
2020-11-03
About author:
YE Lianghua (YE Lianghua, CAO Yunfei, ZHANG Xiuyin. Multibeam Antenna Based on Butler Matrix for 3G/LTE/5G/B5G Base Station Applications[J]. ZTE Communications, 2020, 18(3): 12-19.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202003003
1 |
LI M, LI Q L, WANG B, et al. A low⁃profile dual⁃polarized dipole antenna using wideband AMC reflector [J]. IEEE transactions on antennas and propagation, 2018, 66(5): 2610–2615. DOI:10.1109/tap.2018.2806424
DOI |
2 |
WANG J, WANG W, LIU A M, et al. Cross⁃polarization suppression of a dual⁃polarized microstrip antenna using enclosed substrate⁃integrated cavities [J]. IEEE antennas and wireless propagation letters, 2020, 19(1): 64–68. DOI:10.1109/lawp.2019.2953076
DOI |
3 |
WANG X Y, TANG S C, YANG L L, et al. Differential⁃fed dual⁃polarized dielectric patch antenna with gain enhancement based on higher order modes [J]. IEEE antennas and wireless propagation letters, 2020, 19(3): 502–506. DOI:10.1109/lawp.2020.2964569
DOI |
4 |
SAEIDI⁃MANESH H, SAEEDI S, ZHANG G F. Dual⁃polarized perpendicularly fed balanced feed antenna with high polarization purity [J]. IEEE antennas and wireless propagation letters, 2020, 19(2): 368–372. DOI:10.1109/lawp.2020.2963958
DOI |
5 |
HUANG H, LI X P, LIU Y M. A low⁃profile, single⁃ended and dual⁃polarized patch antenna for 5G application [J]. IEEE transactions on antennas and propagation, 2020, 68(5): 4048–4053. DOI:10.1109/tap.2019.2948743
DOI |
6 |
SUDHAKAR RAO K, MORIN G A, TANG M Q, et al. Development of a 45 GHz multiple⁃beam antenna for military satellite communications [J]. IEEE transactions on antennas and propagation, 1995, 43(10): 1036–1047. DOI:10.1109/8.467639
DOI |
7 |
EGAMI S. A power⁃sharing multiple⁃beam mobile satellite in Ka band [J]. IEEE journal on selected areas in communications, 1999, 17(2): 145–152. DOI:10.1109/49.748778
DOI |
8 |
RAHMAT⁃SAMII Y, DENSMORE A C. Technology trends and challenges of antennas for satellite communication systems [J]. IEEE transactions on antennas and propagation, 2015, 63(4): 1191–1204. DOI:10.1109/tap.2014.2366784
DOI |
9 |
ZHANG Z Y, ZHAO Y R, LIU N W, et al. Design of a dual⁃beam dual⁃polarized offset parabolic reflector antenna [J]. IEEE transactions on antennas and propagation, 2019, 67(2): 712–718. DOI:10.1109/tap.2018.2882593
DOI |
10 |
CHOU H T, CHOU S J, CHIU C W, et al. Quasi⁃orthogonal multibeam radiation of reflector antennas for radio coverage of mobile communication at millimeter⁃wave frequencies [J]. IEEE transactions on antennas and propagation, 2018, 66(11): 6340–6345. DOI:10.1109/tap.2018.2861988
DOI |
11 |
MANOOCHEHRI O, DARVAZEHBAN A, SALARI M A, et al. A parallel plate ultra wideband multibeam microwave lens antenna [J]. IEEE transactions on antennas and propagation, 2018, 66(9): 4878–4883. DOI:10.1109/tap.2018.2845548
DOI |
12 |
LIAN J W, BAN Y L, CHEN Z, et al. SIW Folded cassegrain lens for millimeter⁃wave multibeam application [J]. IEEE antennas and wireless propagation letters, 2018, 17(4): 583–586. DOI:10.1109/lawp.2018.2804923
DOI |
13 |
LARIMORE Z, JENSEN S, GOOD A, et al. Additive manufacturing of luneburg lens antennas using space⁃filling curves and fused filament fabrication [J]. IEEE transactions on antennas and propagation, 2018, 66(6): 2818–2827. DOI:10.1109/tap.2018.2823819
DOI |
14 |
MEI Z L, BAI J, NIU T M, et al. A half maxwell fish⁃eye lens antenna based on gradient⁃index meta materials [J]. IEEE transactions on antennas and propagation, 2012, 60(1): 398–401. DOI:10.1109/tap.2011.2167914
DOI |
15 |
HUANG M, YANG S W, GAO F, et al. A 2⁃D multibeam half maxwell fish⁃eye lens antenna using high impedance surfaces [J]. IEEE antennas and wireless propagation letters, 2014, 13: 365–368. DOI:10.1109/lawp.2014.2306207
DOI |
16 |
KWON D H, WERNER D H. Beam scanning using flat transformation electromagnetic focusing lenses [J]. IEEE antennas and wireless propagation letters, 2009, 8: 1115–1118. DOI:10.1109/lawp.2009.2033619
DOI |
17 |
JIANG Z H, GREGORY M D, WERNER D H. Broadband high directivity multibeam emission through transformation optics⁃enabled metamaterial lenses [J]. IEEE transactions on antennas and propagation, 2012, 60(11): 5063–5074. DOI:10.1109/tap.2012.2207685
DOI |
18 |
WU Q, HIROKAWA J, YIN J X, et al. Millimeter⁃wave multibeam end fire dual⁃circularly polarized antenna array for 5g wireless applications [J]. IEEE transactions on antennas and propagation, 2018, 66(9): 4930–4935. DOI:10.1109/tap.2018.2851667
DOI |
19 |
LI Y J, WANG J H, LUK K M. Millimeter⁃wave multibeam aperture⁃coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications [J]. IEEE transactions on antennas and propagation, 2017, 65(12): 6422–6431. DOI:10.1109/tap.2017.2681429
DOI |
20 |
KIM D H, HIROKAWA J, ANDO M. Design of waveguide short⁃slot two⁃plane couplers for one⁃body 2⁃D beam⁃switching butler matrix application [J]. IEEE transactions on microwave theory and techniques, 2016: 1–9. DOI:10.1109/tmtt.2016.2515605
DOI |
21 |
ZHONG L H, BAN Y L, LIAN J W, et al. Miniaturized SIW multibeam antenna array fed by dual⁃layer 8 × 8 Butler matrix [J]. IEEE antennas and wireless propagation letters, 2017, 16: 3018–3021. DOI:10.1109/lawp.2017.2758373
DOI |
22 |
LIAO W J, TUAN S K, LEE Y, et al. A Diversity receiver⁃based high⁃gain broad⁃beam reception array antenna [J]. IEEE antennas and wireless propagation letters, 2018, 17(3): 410–413. DOI:10.1109/lawp.2018.2792438
DOI |
23 |
WINCZA K, STASZEK K, GRUSZCZYNSKI S. Broadband multibeam antenna arrays fed by frequency⁃dependent butler matrices [J]. IEEE transactions on antennas and propagation, 2017, 65(9): 4539–4547. DOI:10.1109/tap.2017.2722823
DOI |
24 |
HONG W, JIANG Z H, YU C, et al. Multibeam antenna technologies for 5G wireless communications [J]. IEEE transactions on antennas and propagation, 2017, 65(12): 6231–6249. DOI:10.1109/tap.2017.2712819
DOI |
25 |
WANG Y Q, MA K X, JIAN Z. A low⁃loss Butler matrix using patch element and honeycomb concept on SISL platform [J]. IEEE transactions on microwave theory and techniques, 2018, 66(8): 3622–3631. DOI:10.1109/tmtt.2018.2845868
DOI |
26 |
DING K J, KISHK A A. 2D Butler matrix and phase⁃shifter group [J]. IEEE transactions on microwave theory and techniques, 2018, 66(12): 5554–5562. DOI:10.1109/tmtt.2018.2879013
DOI |
27 |
DYAB W M, SAKR A A, WU K. Dually⁃polarized Butler matrix for base stations with polarization diversity [J]. IEEE transactions on microwave theory and techniques, 2018, 66(12): 5543–5553. DOI:10.1109/tmtt.2018.2880786
DOI |
28 | BALANIS C A. Antenna theory: analysis and design [M]. Hoboken, USA: Wiley, 1996 |
29 |
TAJIK A, SHAFIEI ALAVIJEH A, FAKHARZADEH M. Asymmetrical 4 × 4 Butler matrix and its application for single layer 8 × 8 Butler matrix [J]. IEEE transactions on antennas and propagation, 2019, 67(8): 5372–5379. DOI:10.1109/tap.2019.2916695
DOI |
30 |
SHAO Q, CHEN F C, WANG Y, et al. Design of modified 4 × 6 filtering butler matrix based on all⁃resonator structures [J]. IEEE transactions on microwave theory and techniques, 2019, 67(9): 3617–3627. DOI:10.1109/tmtt.2019.2925113
DOI |
31 |
LIAN J W, BAN Y L, YANG Q L, et al. Planar millimeter⁃wave 2D beam⁃scanning multibeam array antenna fed by compact SIW beam⁃forming network [J]. IEEE transactions on antennas and propagation, 2018, 66(3): 1299–1310. DOI:10.1109/tap.2018.2797873
DOI |
32 |
LI Y J, LUK K M. 60⁃GHz dual⁃polarized two⁃dimensional switch⁃beam wideband antenna array of aperture⁃coupled magneto⁃electric dipoles [J]. IEEE transactions on antennas and propagation, 2016, 64(2): 554–563. DOI:10.1109/tap.2015.2507170
DOI |
33 |
KIM D H, HIROKAWA J, ANDO M. Design of waveguide short⁃slot two⁃plane couplers for one⁃body 2D beam⁃switching Butler matrix application [J]. IEEE transactions on microwave theory and techniques, 2016: 1–9. DOI:10.1109/tmtt.2016.2515605
DOI |
34 |
ZHANG X Y, XUE D, YE L H, et al. Compact dual⁃band dual⁃polarized interleaved two⁃beam array with stable radiation pattern based on filtering elements [J]. IEEE transactions on antennas and propagation, 2017, 65(9): 4566–4575. DOI:10.1109/tap.2017.2723914
DOI |
35 |
DUAN W, ZHANG X Y, PAN Y M, et al. Dual⁃polarized filtering antenna with high selectivity and low cross polarization [J]. IEEE transactions on antennas and propagation, 2016, 64(10): 4188–4196. DOI:10.1109/tap.2016.2594818
DOI |
36 |
YE L H, ZHANG X Y, GAO Y, et al. Wideband dual⁃polarized two⁃beam antenna array with low sidelobe and grating⁃lobe levels for base⁃station applications [J]. IEEE transactions on antennas and propagation, 2019, 67(8): 5334–5343. DOI:10.1109/tap.2019.2913795
DOI |
37 |
ZHU H, SUN H H, JONES B, et al. Wideband dual⁃polarized multiple beam⁃forming antenna arrays [J]. IEEE transactions on antennas and propagation, 2019, 67(3): 1590–1604. DOI:10.1109/tap.2018.2888728
DOI |
38 |
LIAN J W, BAN Y L, XIAO C H, et al. Compact substrate⁃integrated 4 × 8 Butler matrix with sidelobe suppression for millimeter⁃wave multibeam application [J]. IEEE antennas and wireless propagation letters, 2018, 17(5): 928–932. DOI:10.1109/lawp.2018.2825367
DOI |
39 |
LI Y J, WANG J H, LUK K M. Millimeter⁃wave multibeam aperture⁃coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications [J]. IEEE transactions on antennas and propagation, 2017, 65(12): 6422–6431. DOI:10.1109/tap.2017.2681429
DOI |
[1] | Hang Wong and Kwai Man Luk. Design of a Magneto-Electric Dipole Element for Mobile Communication Base Station Antennas [J]. ZTE Communications, 2011, 9(2): 20-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||