ZTE Communications ›› 2020, Vol. 18 ›› Issue (2): 20-30.DOI: 10.12142/ZTECOM.202002004
• Special Topic • Previous Articles Next Articles
JIANG Zhihui(), HE Yinghui, YU Guanding
Received:
2020-01-31
Online:
2020-06-25
Published:
2020-08-07
About author:
JIANG Zhihui (Supported by:
JIANG Zhihui, HE Yinghui, YU Guanding. Joint User Selection and Resource Allocation for Fast Federated Edge Learning[J]. ZTE Communications, 2020, 18(2): 20-30.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202002004
1 |
ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. DOI: 10.1109/jproc.2019.2918951
DOI |
2 | ZHU G, LIU D Z, DU Y Q, et al. Towards an intelligent edge: wireless communication meets machine learning [EB/OL]. (2018⁃09⁃02)[2019⁃12⁃05]. |
3 | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication⁃efficient learning of deep networks from decentralized data [C]//20th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA, 2017: 1273–1282. |
4 | ETSI. Mobile edge computing⁃introductory technical white paper [R]. 2014 |
5 | ZHU G X, WANG Y, HUANG K B. Broadband analog aggregation for low⁃latency federated edge learning (extended version) [EB/OL]. (2018⁃10⁃30)[2019⁃01⁃16]. |
6 |
NISHIO T, YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge [C]//IEEE International Conference on Communications (ICC). Shanghai, China, 2019: 18852422. DOI: 10.1109/icc.2019.8761315
DOI |
7 | ZENG Q S, DU Y Q, LEUNG K K, et al. Energy⁃efficient radio resource allocation for federated edge learning [EB/OL]. (2019⁃07⁃13)[2019⁃12⁃20]. |
8 | YANG Z H, CHEN M Z, SAAD W, et al. Energy efficient federated learning over wireless communication networks [EB/OL]. (2019⁃11⁃06)[2019⁃12⁃10]. |
9 |
YANG H H, LIU Z Z, QUEK T Q S, et al. Scheduling policies for federated learning in wireless networks [J]. IEEE transactions on communications, 2020, 68(1): 317–333. DOI: 10.1109/tcomm.2019.2944169
DOI |
10 |
YANG H H, ARAFA A, QUEK T Q S, et al. Age⁃based scheduling policy for federated learning in mobile edge networks [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain, 2020. DOI: 10.1109/icassp40776.2020.9053740
DOI |
11 | CHEN M Z, YANG Z H, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks [EB/OL]. (2019⁃09⁃17)[2020⁃01⁃10]. |
12 | CHEN M Z, POOR H V, SAAD W, et al. Convergence time optimization for federated learning over wireless networks [EB/OL]. (2020⁃01⁃22)[2020⁃03⁃25]. |
13 | KATHAROPOULOS A, FLEURET F. Not all samples are created equal: deep learning with importance sampling [EB/OL]. (2018⁃03⁃02)[2019⁃10⁃28]. |
14 | LIU D Z, ZHU G X, ZHANG J, et al. Wireless data acquisition for edge learning: data⁃importance aware retransmission [EB/OL]. (2018⁃10⁃05)[2019⁃03⁃19]. |
15 | LIU D Z, ZHU G X, ZHANG J, et al. Data⁃importance aware user scheduling for communication⁃efficient edge machine learning [EB/OL]. (2019⁃03⁃19)[2019⁃10⁃05]. |
16 | ETSI. LTE; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (3GPP TS 36.211 version 15.6.0 release 15): ETSI TS 136 211 V15.6.0 [S]. ETSI, 2019 |
17 | LIN Y J, HAN S, MAO H Z, et al. Deep gradient compression: reducing the communication bandwidth for distributed training [EB/OL]. (2017⁃10⁃05)[2018⁃02⁃ 05]. |
18 |
REN J K, YU G D, CAI Y L, et al. Latency optimization for resource allocation in mobile⁃edge computation offloading [J]. IEEE transactions on wireless communications, 2018, 17(8): 5506–5519. DOI: 10.1109/twc.2018.2845360
DOI |
19 | CHEN T Y, GIANNAKIS G B, SUN T, et al. LAG: lazily aggregated gradient for communication⁃efficient distributed learning [EB/OL]. (2018⁃05⁃25)[2019⁃12⁃02]. |
20 | REN J K, YU G D, and DING G Y. Accelerating DNN training in wireless federated edge learning system [EB/OL]. (2019⁃05⁃23)[2020⁃03⁃28]. |
[1] | XU Xinyi, LIU Shengli, YU Guanding. Adaptive Retransmission Design for Wireless Federated Edge Learning [J]. ZTE Communications, 2023, 21(1): 3-14. |
[2] | XU Yongjun, YANG Zhaohui, HUANG Chongwen, YUEN Chau, GUI Guan. Resource Allocation for Two‑Tier RIS‑Assisted Heterogeneous NOMA Networks [J]. ZTE Communications, 2022, 20(1): 36-47. |
[3] | JI Hong, ZHANG Tianxiang, ZHANG Kai, WANG Wanyuan, WU Weiwei. Efficient Network Slicing with Dynamic Resource Allocation [J]. ZTE Communications, 2021, 19(1): 11-19. |
[4] | DENG Xu, ZHU Lidong. Resource Allocation Strategy Based on Matching Game [J]. ZTE Communications, 2020, 18(4): 10-17. |
[5] | ZHANG Pengyu, XIE Lifeng, XU Jie. Joint Placement and Resource Allocation for UAV-Assisted Mobile Edge Computing Networks with URLLC [J]. ZTE Communications, 2020, 18(2): 49-56. |
[6] | JIN Yaqi, XU Xiaodong, TAO Xiaofeng. Multi-QoS Guaranteed Resource Allocation for Multi-Services Based on Opportunity Costs [J]. ZTE Communications, 2018, 16(2): 9-15. |
[7] | GONG Jie, ZHOU Sheng. Exploiting Correlations of Energy and Information: A New Paradigm of Energy Harvesting Communications [J]. ZTE Communications, 2018, 16(1): 18-25. |
[8] | SUN Yang, CHANG Yongyu, WANG Chao, ZHANG Lu, ZHANG Yu, and WANG Xinhui. Research on Interference Cancellation for Switched-on Small Cells in Ultra Dense Network [J]. ZTE Communications, 2016, 14(S1): 48-53. |
[9] | WEI Zhiqiang, YUAN Jinhong, Derrick Wing Kwan Ng, Maged Elkashlan, DING Zhiguo. A Survey of Downlink Non-Orthogonal Multiple Access for 5G Wireless Communication Networks [J]. ZTE Communications, 2016, 14(4): 17-25. |
[10] | Qinghua Shen, Xuemin (Sherman) Shen, Tom H. Luan, and Jing Liu. MAC Layer Resource Allocation forWireless Body Area Networks [J]. ZTE Communications, 2014, 12(3): 13-21. |
[11] | Liu Fuqiang, Shan Lianhai. Heterogeneous Vehicular Communication Architecture and Key Technologies [J]. ZTE Communications, 2010, 8(4): 39-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||