ZTE Communications ›› 2022, Vol. 20 ›› Issue (3): 70-76.DOI: 10.12142/ZTECOM.202203009
• Research Paper • Previous Articles Next Articles
WU Qingqiang1, CHEN Jianzhong1(), WU Zengqiang2, GONG Hongwei2
Received:
2021-10-21
Online:
2022-09-13
Published:
2022-09-14
About author:
WU Qingqiang received his BS degree in electromagnetic field and wireless technology and MS degree in electronic science and technology from Xidian University, China in 2019 and 2022, respectively. He joined ZTE Corporation in 2022 after graduation,. During his postgraduate study, he mainly engaged in the research related to filters in the National Key Laboratory of Antennas and Microwave Technology at Xidian University, and participated in the publication of papers in academic journals and international conferences and completed a number of filter related projects. In addition, he won the first-class scholarship of the university for many times, and won the second prize of northwest division in the 15th China Graduate Electronic Design Competition.|CHEN Jianzhong (Supported by:
WU Qingqiang, CHEN Jianzhong, WU Zengqiang, GONG Hongwei. Synthesis and Design of 5G Duplexer Based on Optimization Method[J]. ZTE Communications, 2022, 20(3): 70-76.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202203009
Passbard Range/MHz | Return Loss/dB |
---|---|
1 710–1 785 | -17 |
1 920–1 980 | -17 |
Table 1 Passband indicators
Passbard Range/MHz | Return Loss/dB |
---|---|
1 710–1 785 | -17 |
1 920–1 980 | -17 |
Low-Frequency Channel Filter | High-Frequency Channel Filter | ||
---|---|---|---|
1 805–1 880 MHz | -80 dB | 1 805–1 880 MHz | -80 dB |
Table 2 Restraint outside the band
Low-Frequency Channel Filter | High-Frequency Channel Filter | ||
---|---|---|---|
1 805–1 880 MHz | -80 dB | 1 805–1 880 MHz | -80 dB |
Figure 4 (a) Initial response of the duplexer, (b) corresponding result after optimizing low channel filter in the first iteration, (c) corresponding result after optimizing high channel filter in the first iteration, and (d) final result
Initial | First | Second | Final | |
---|---|---|---|---|
M(s,0) | 1.400 0 | 1.388 4 | 1.374 2 | 1.391 0 |
M(0,1) | 0.658 7 | 0.704 4 | 0.690 8 | 0.673 1 |
M(0,10) | 0.658 7 | 0.644 9 | 0.651 8 | 0.584 2 |
M(9,L1) | 0.501 3 | 0.517 4 | 0.517 4 | 0.501 3 |
M(16,L2) | 0.427 2 | 0.427 2 | 0.428 7 | 0.427 2 |
M(1,1) | 0.708 9 | 0.661 7 | 0.661 7 | 0.656 5 |
M(1,2) | 0.225 4 | 0.224 5 | 0.224 5 | 0.211 1 |
M(2,2) | 0.709 1 | 0.704 7 | 0.704 7 | 0.703 4 |
M(2,3) | 0.092 4 | 0.091 3 | 0.091 3 | 0.092 4 |
M(2,4) | -0.139 8 | -0.145 1 | -0.145 1 | -0.139 3 |
M(3,3) | 0.490 6 | 0.478 2 | 0.478 2 | 0.489 8 |
M(3,5) | 0.083 2 | 0.080 0 | 0.080 0 | 0.083 0 |
M(4,4) | 0.805 4 | 0.798 5 | 0.798 5 | 0.804 0 |
M(4,5) | 0.130 9 | 0.137 2 | 0.137 2 | 0.131 0 |
M(5,5) | 0.712 8 | 0.715 2 | 0.715 2 | 0.712 5 |
M(5,6) | 0.155 1 | 0.158 3 | 0.158 3 | 0.155 5 |
M(6,6) | 0.714 1 | 0.717 4 | 0.717 4 | 0.714 0 |
M(6,7) | 0.086 5 | 0.084 8 | 0.084 8 | 0.086 5 |
M(6,8) | 0.132 2 | 0.139 3 | 0.139 3 | 0.132 1 |
M(7,7) | 0.489 3 | 0.476 9 | 0.476 9 | 0.489 2 |
M(7,9) | -0.131 4 | -0.133 2 | -0.133 2 | -0.132 0 |
M(8,8) | 0.822 1 | 0.821 4 | 0.821 4 | 0.822 0 |
M(8,9) | 0.183 1 | 0.190 8 | 0.190 8 | 0.183 2 |
M(9,9) | 0.709 3 | 0.704 9 | 0.704 9 | 0.708 7 |
M(10,10) | -0.790 9 | -0.790 9 | -0.743 2 | -0.748 4 |
M(10,11) | 0.163 8 | 0.163 8 | 0.178 5 | 0.155 9 |
M(11,11) | -0.791 1 | -0.791 1 | -0.790 2 | -0.787 7 |
M(11,12) | 0.122 2 | 0.122 2 | 0.130 5 | 0.122 0 |
M(12,12) | -0.791 6 | -0.791 6 | -0.792 7 | -0.790 8 |
M(12,13) | 0.070 7 | 0.070 7 | 0.071 7 | 0.092 0 |
M(12,14) | -0.091 9 | -0.091 9 | -0.097 2 | 0.070 7 |
M(13,13) | -0.647 5 | -0.647 5 | -0.642 7 | -0.647 3 |
M(13,15) | 0.075 1 | 0.075 1 | 0.077 3 | 0.075 0 |
M(14,14) | -0.879 1 | -0.879 1 | -0.884 2 | -0.878 9 |
M(14,15) | 0.096 3 | 0.096 3 | 0.107 9 | 0.096 35 |
M(15,15) | -0.791 1 | -0.791 1 | -0.793 5 | -0.791 0 |
M(15,16) | 0.163 8 | 0.163 8 | 0.170 4 | 0.163 8 |
M(16,16) | -0.791 0 | -0.791 0 | -0.783 5 | -0.790 8 |
Table 3 Values of the coupling matrix
Initial | First | Second | Final | |
---|---|---|---|---|
M(s,0) | 1.400 0 | 1.388 4 | 1.374 2 | 1.391 0 |
M(0,1) | 0.658 7 | 0.704 4 | 0.690 8 | 0.673 1 |
M(0,10) | 0.658 7 | 0.644 9 | 0.651 8 | 0.584 2 |
M(9,L1) | 0.501 3 | 0.517 4 | 0.517 4 | 0.501 3 |
M(16,L2) | 0.427 2 | 0.427 2 | 0.428 7 | 0.427 2 |
M(1,1) | 0.708 9 | 0.661 7 | 0.661 7 | 0.656 5 |
M(1,2) | 0.225 4 | 0.224 5 | 0.224 5 | 0.211 1 |
M(2,2) | 0.709 1 | 0.704 7 | 0.704 7 | 0.703 4 |
M(2,3) | 0.092 4 | 0.091 3 | 0.091 3 | 0.092 4 |
M(2,4) | -0.139 8 | -0.145 1 | -0.145 1 | -0.139 3 |
M(3,3) | 0.490 6 | 0.478 2 | 0.478 2 | 0.489 8 |
M(3,5) | 0.083 2 | 0.080 0 | 0.080 0 | 0.083 0 |
M(4,4) | 0.805 4 | 0.798 5 | 0.798 5 | 0.804 0 |
M(4,5) | 0.130 9 | 0.137 2 | 0.137 2 | 0.131 0 |
M(5,5) | 0.712 8 | 0.715 2 | 0.715 2 | 0.712 5 |
M(5,6) | 0.155 1 | 0.158 3 | 0.158 3 | 0.155 5 |
M(6,6) | 0.714 1 | 0.717 4 | 0.717 4 | 0.714 0 |
M(6,7) | 0.086 5 | 0.084 8 | 0.084 8 | 0.086 5 |
M(6,8) | 0.132 2 | 0.139 3 | 0.139 3 | 0.132 1 |
M(7,7) | 0.489 3 | 0.476 9 | 0.476 9 | 0.489 2 |
M(7,9) | -0.131 4 | -0.133 2 | -0.133 2 | -0.132 0 |
M(8,8) | 0.822 1 | 0.821 4 | 0.821 4 | 0.822 0 |
M(8,9) | 0.183 1 | 0.190 8 | 0.190 8 | 0.183 2 |
M(9,9) | 0.709 3 | 0.704 9 | 0.704 9 | 0.708 7 |
M(10,10) | -0.790 9 | -0.790 9 | -0.743 2 | -0.748 4 |
M(10,11) | 0.163 8 | 0.163 8 | 0.178 5 | 0.155 9 |
M(11,11) | -0.791 1 | -0.791 1 | -0.790 2 | -0.787 7 |
M(11,12) | 0.122 2 | 0.122 2 | 0.130 5 | 0.122 0 |
M(12,12) | -0.791 6 | -0.791 6 | -0.792 7 | -0.790 8 |
M(12,13) | 0.070 7 | 0.070 7 | 0.071 7 | 0.092 0 |
M(12,14) | -0.091 9 | -0.091 9 | -0.097 2 | 0.070 7 |
M(13,13) | -0.647 5 | -0.647 5 | -0.642 7 | -0.647 3 |
M(13,15) | 0.075 1 | 0.075 1 | 0.077 3 | 0.075 0 |
M(14,14) | -0.879 1 | -0.879 1 | -0.884 2 | -0.878 9 |
M(14,15) | 0.096 3 | 0.096 3 | 0.107 9 | 0.096 35 |
M(15,15) | -0.791 1 | -0.791 1 | -0.793 5 | -0.791 0 |
M(15,16) | 0.163 8 | 0.163 8 | 0.170 4 | 0.163 8 |
M(16,16) | -0.791 0 | -0.791 0 | -0.783 5 | -0.790 8 |
1 |
RHODES J D, LEVY R. A generalized multiplexer theory [J]. IEEE transactions on microwave theory and techniques, 1979, 27(2): 99–111. DOI: 10.1109/tmtt.1979.1129570
DOI |
2 |
RHODES J D, LEVY R. Design of general manifold multiplexers [J]. IEEE transactions on microwave theory and techniques, 1979, 27(2): 111–123. DOI: 10.1109/ tmtt.1979.1129571
DOI |
3 |
MACCHIARELLA G, TAMIAZZO S. Novel approach to the synthesis of microwave duplexers [J]. IEEE transactions on microwave theory and techniques, 2006, 54(12): 4281–4290. DOI: 10.1109/TMTT.2006.885909
DOI |
4 |
MENG H, WU K L. Direct optimal synthesis of a microwave bandpass filter with general loading effect [J]. IEEE transactions on microwave theory and techniques, 2013, 61(7): 2566–2573. DOI: 10.1109/TMTT.2013.2264682
DOI |
5 |
ZHAO P, WU K L. An analytical approach to synthesis of duplexers with an optimal lumped-element junction model [C]//2014 IEEE MTT-S international microwave symposium (IMS2014). IEEE, 2014: 1–3. DOI: 10.1109/MWSYM.2014.6848399
DOI |
6 |
ZHAO P, WU K L. An iterative and analytical approach to optimal synthesis of a multiplexer with a star-junction [J]. IEEE transactions on microwave theory and techniques, 2014, 62(12): 3362–3369. DOI: 10.1109/TMTT.2014.2364222
DOI |
7 |
LIU B, YANG H, LANCASTER M J. Synthesis of coupling matrix for duplexers based on a self-adaptive differential evolution algorithm [J]. IEEE transactions on microwave theory and techniques, 2018, 66(2): 813–821. DOI: 10.1109/tmtt.2017.2772855Jan. 2018 .
DOI |
8 |
YU Y, LIU B, WANG Y, et al. A general coupling matrix synthesis method for all-resonator duplexers and multiplexers [J]. IEEE transactions on microwave theory and techniques, 2020, 68(3): 987–999. DOI: 10.1109/TMTT.2019.2957430
DOI |
9 |
SKAIK T F, LANCASTER M J, HUANG F. Synthesis of multiple output coupled resonator circuits using coupling matrix optimisation [J]. IET microwaves, antennas & propagation, 2011, 5(9): 1081. DOI: 10.1049/iet-map.2010.0447
DOI |
10 | XIA W L. Duplexers and multiplexers design by using coupling matrix optimization [D]. Birmingham, U.K.: Birmingham University, 2015 |
11 |
CAMERON R J, KUDSIA C M, MANSOUR R R. Microwave filters for communication systems [M]. Hoboken, USA: John Wiley & Sons, Inc., 2018. DOI: 10.1002/9781119292371
DOI |
12 | MATLAB. MATLAB optimization toolbox. user’s guide [EB/OL]. (2018-05-12)[2021-09-18]. |
[1] | GAO Jun, HAN Yinjun, LIN Yang, MIAO Hao, XU Mo. Learned Distributed Query Optimizer: Architecture and Challenges [J]. ZTE Communications, 2024, 22(2): 49-54. |
[2] | YIN Yujie, CHEN Zhang. Perceptual Optimization for Point-Based Point Cloud Rendering [J]. ZTE Communications, 2023, 21(4): 47-53. |
[3] | ZHANG Bo, WANG Yihui, FENG Yinian, YANG Yonghui, PENG Lin. A 220 GHz Frequency-Division Multiplexing Wireless Link with High Data Rate [J]. ZTE Communications, 2023, 21(3): 63-69. |
[4] | JI Yuhe, HAN Jing, ZHAO Yongxin, ZHANG Shenglin, GONG Zican. Log Anomaly Detection Through GPT-2 for Large Scale Systems [J]. ZTE Communications, 2023, 21(3): 70-76. |
[5] | TANG Yuanqi, ZHANG Huimin, ZHENG Zheng, LI Ping, ZHU Yu. Hybrid Architecture and Beamforming Optimization for Millimeter Wave Systems [J]. ZTE Communications, 2023, 21(3): 93-104. |
[6] | LOU Kaihao, YANG Yongjian, YANG Funing, ZHANG Xingliang. Maximum-Profit Advertising Strategy Using Crowdsensing Trajectory Data [J]. ZTE Communications, 2021, 19(2): 29-43. |
[7] | BALEWSKI Lukasz, BARANOWSKI Michal, JASINSKI Maciej, LAMECKI Adam, MROZOWSKI Michal. Electromagnetic Simulation with 3D FEM for Design Automation in 5G Era [J]. ZTE Communications, 2020, 18(3): 42-48. |
[8] | ZHANG Pengyu, XIE Lifeng, XU Jie. Joint Placement and Resource Allocation for UAV-Assisted Mobile Edge Computing Networks with URLLC [J]. ZTE Communications, 2020, 18(2): 49-56. |
[9] | LIU Shen, QIN Yuannian, LI Xiaofan, ZHAO Yubin, XU Chengzhong. Data-Driven Joint Estimation for Blind Signal Based on GA-PSO Algorithm [J]. ZTE Communications, 2019, 17(3): 63-70. |
[10] | LI Dingquan, JIANG Tingting, JIANG Ming. Recent Advances and Challenges in Video Quality Assessment [J]. ZTE Communications, 2019, 17(1): 3-11. |
[11] | LIAO Lingxia, Victor C. M. Leung, LAI Chin-Feng. Evolutionary Algorithms in Software Defined Networks: Techniques, Applications, and Issues [J]. ZTE Communications, 2017, 15(3): 20-36. |
[12] | DONG Zhenjiang, SHUANG Kai, CAI Yanan, WANG Wei, and LI Congbing. An Optimization of HTTP/2 for Mobile Applications [J]. ZTE Communications, 2016, 14(S1): 35-42. |
[13] | Didier El Baz, Julien Bourgeois. Smart Cities in Europe and the ALMA Logistics Project [J]. ZTE Communications, 2015, 13(4): 10-15. |
[14] | Qinghua Shen, Xuemin (Sherman) Shen, Tom H. Luan, and Jing Liu. MAC Layer Resource Allocation forWireless Body Area Networks [J]. ZTE Communications, 2014, 12(3): 13-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||