1 |
FISHER A, CANNIZZARO R, COCHRANE M, et al. ColMap: a memory-efficient occupancy grid mapping framework [J]. Robotics and autonomous systems, 2021, 142: 103755. DOI: 10.1016/j.robot.2021.103755
|
2 |
CERNEA D. OpenMVS: multi-view stereo reconstruction library [EB/OL]. [2023-05-20].
|
3 |
YANG J Y, MAO W, ALVAREZ J M, et al. Cost volume pyramid based depth inference for multi-view stereo [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 4876–4885. DOI: 10.1109/CVPR42600.2020.00493
|
4 |
WEI Z Z, ZHU Q T, MIN C, et al. AA-RMVSNet: Adaptive aggregation recurrent multi-view stereo network [C]//Proc. IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021: 6167–6176. DOI: 10.1109/ICCV48922.2021.00613
|
5 |
LU P, SHENG B, SHI W Z. Scene visual perception and AR navigation applications [J]. ZTE communications, 2023, 21(1): 81–88. DOI: 10.12142/ZTECOM.202301010
|
6 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017: 30
|
7 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale [EB/OL]. (2020-01-22)[2023-05-20].
|
8 |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis [M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 405–421. DOI: 10.1007/978-3-030-58452-8_24
|
9 |
MATURANA D, SCHERER S. VoxNet: a 3D Convolutional Neural Network for real-time object recognition [C]//Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 922–928. DOI: 10.1109/IROS.2015.7353481
|
10 |
WANG N Y, ZHANG Y D, LI Z W, et al. Pixel2Mesh: generating 3D mesh models from single RGB images [C]//European Conference on Computer Vision. Cham: Springer, 2018: 55–71. DOI: 10.1007/978-3-030-01252-6_4
|
11 |
SAYED M, GIBSON J, WATSON J, et al. SimpleRecon: 3D reconstruction without 3D convolutions [M]//Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 1–19. DOI: 10.1007/978-3-031-19827-4_1
|
12 |
SUN J M, XIE Y M, CHEN L H, et al. NeuralRecon: real-time coherent 3D reconstruction from monocular video [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021: 15593–15602. DOI: 10.1109/CVPR46437.2021.01534
|
13 |
YARIV L, GU J T, KASTEN Y, et al. Volume rendering of neural implicit surfaces [C]//Proc. 35th International Conference on Neural Information Processing System. NIPS, 2021: 4805–4815
|
14 |
WANG P, LIU L J, LIU Y, et al. NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction [EB/OL]. (2020-06-20) [2023-05-20].
|
15 |
NG P C, HENIKOFF S. SIFT: predicting amino acid changes that affect protein function [J]. Nucleic acids research, 2003, 31(13): 3812–3814. DOI: 10.1093/nar/gkg509
|
16 |
BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF) [J]. Computer vision and image understanding, 2008, 110(3): 346–359. DOI: 10.1016/j.cviu.2007.09.014
|
17 |
RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF [C]//Proc. International Conference on Computer Vision. IEEE, 2011: 2564–2571. DOI: 10.1109/ICCV.2011.6126544
|
18 |
MOULON P, MONASSE P, PERROT R, et al. OpenMVG: open multiple view geometry [M]//KERAUTRET B, COLOM M, MONASSE P, eds. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2017: 60–74. DOI: 10.1007/978-3-319-56414-2_5
|
19 |
WU Z F, SHEN C H, VAN DEN HENGEL A. Wider or deeper: revisiting the ResNet model for visual recognition [J]. Pattern recognition, 2019, 90: 119–133. DOI: 10.1016/j.patcog.2019.01.006
|
20 |
BARKAU R L. UNET: one-dimensional unsteady flow through a full network of open channels. User's manual [R]. Hydrologic Engineering Center Davis CA, 1996
|
21 |
YAO Y, LUO Z X, LI S W, et al. MVSNet: depth inference for unstructured multi-view stereo [C]//European Conference on Computer Vision. Springer, 2018: 785-801. DOI: 10.1007/978-3-030-01237-3_47
|
22 |
IM S, JEON H G, LIN S, et al. DPSNet: end-to-end deep plane sweep stereo [EB/OL]. (2019-05-02)[2023-05-06].
|
23 |
MUREZ Z, VAN AS T, BARTOLOZZI J, et al. Atlas: end-to-end 3D scene reconstruction from posed images [M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 414–431. DOI: 10.1007/978-3-030-58571-6_25
|
24 |
YAN J F, WEI Z Z, YI H W, et al. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking [C]//16th European Conference on Computer Vision. Cham: Springer, 2020: 674-689.10.1007/978-3-030-58548-8_39
|
25 |
YU Z H, PENG S Y, NIEMEYER M, et al. MonoSDF: exploring monocular geometric cues for neural implicit surface reconstruction [EB/OL]. (2022-06-01)[2023-05-20].
|
26 |
LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm [J]. ACM SIGGRAPH computer graphics, 1987, 21(4): 163–169. DOI: 10.1145/37402.37422
|
27 |
SHEN T, GAO J, YIN K, et al. Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis [J]. Advances in Neural Information Processing Systems, 2021, 34: 6087-6101.
|
28 |
MUNKBERG J, CHEN W Z, HASSELGREN J, et al. Extracting triangular 3D models, materials, and lighting from images [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 8270–8280. DOI: 10.1109/CVPR52688.2022.00810
|
29 |
YARIV L, HEDMAN P, REISER C, et al. BakedSDF: meshing neural SDFs for real-time view synthesis [EB/OL]. (2022-06-01)[2023-05-20].
|
30 |
FAREK J, HUGHES D, SALERNO W, et al. xAtlas: Scalable small variant calling across heterogeneous next-generation sequencing experiments [J]. GigaScience, 2023, 12: giac125. DOI: 10.1093/gigascience/giac125
|