ZTE Communications ›› 2023, Vol. 21 ›› Issue (2): 61-69.DOI: 10.12142/ZTECOM.202302009
• Special Topic • Previous Articles Next Articles
YOU Qian1, XU Qian1(), YANG Xin1, ZHANG Tao2, CHEN Ming3
Received:
2023-02-21
Online:
2023-06-13
Published:
2023-06-13
About author:
YOU Qian received her BS degree from Yangzhou University, China in 2021. She is currently pursuing her MS degree at the school of electronics and information, Northwestern Polytechnical University, China. Her research interests include machine learning for communications, IRS-assisted communications, and UAV-assisted Communications.|XU Qian (Supported by:
YOU Qian, XU Qian, YANG Xin, ZHANG Tao, CHEN Ming. RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning[J]. ZTE Communications, 2023, 21(2): 61-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202302009
Parameter | Value | |
---|---|---|
Location | UAV | From (0, 0, 1) m to (0, 60, 1) m |
RIS | (0, 10, 2) m | |
CUE | (20, 0, 1) m | |
DT1 | (20, 60, 1) m | |
Distance of D2D | 5 m | |
Size area of D2D | 10 m | |
Minimum SINR of CUE | 12 dB | |
Minimum achievable rate of D2D | 2 dB | |
Maximum interference of CUE | -30 dB | |
Max transmit power of UAV | 30 W | |
Max transmit power of DT | 10 W, 20 W, 30 W | |
Path loss coefficient | -30 dB | |
Path loss exponent over the user-UAV link | 3 | |
Path loss exponent | 2.5 | |
The path loss at the reference distance | 0.01 |
Table 1 Parameters of the proposed system
Parameter | Value | |
---|---|---|
Location | UAV | From (0, 0, 1) m to (0, 60, 1) m |
RIS | (0, 10, 2) m | |
CUE | (20, 0, 1) m | |
DT1 | (20, 60, 1) m | |
Distance of D2D | 5 m | |
Size area of D2D | 10 m | |
Minimum SINR of CUE | 12 dB | |
Minimum achievable rate of D2D | 2 dB | |
Maximum interference of CUE | -30 dB | |
Max transmit power of UAV | 30 W | |
Max transmit power of DT | 10 W, 20 W, 30 W | |
Path loss coefficient | -30 dB | |
Path loss exponent over the user-UAV link | 3 | |
Path loss exponent | 2.5 | |
The path loss at the reference distance | 0.01 |
1 |
DANG S P, CHEN G J, COON J P. Multicarrier relay selection for full-duplex relay-assisted OFDM D2D systems [J]. IEEE transactions on vehicular technology, 2018, 67(8): 7204–7218. DOI: 10.1109/TVT.2018.2829401
DOI |
2 |
WU Q Q, ZENG Y, ZHANG R. Joint trajectory and communication design for multi-UAV enabled wireless networks [J]. IEEE transactions on wireless communications, 2018, 17(3): 2109–2121. DOI: 10.1109/TWC.2017.2789293
DOI |
3 |
WU Q Q, ZHANG R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network [J]. IEEE communications magazine, 2020, 58(1): 106–112. DOI: 10.1109/MCOM.001.1900107
DOI |
4 |
WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design [C]//IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 1–6. DOI: 10.1109/GLOCOM.2018.8647620
DOI |
5 |
HUANG C W, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication [J]. IEEE transactions on wireless communications, 2019, 18(8): 4157–4170. DOI: 10.1109/TWC.2019.2922609
DOI |
6 |
YANG G, LIAO Y, LIANG Y C, et al. Reconfigurable intelligent surface empowered device-to-device communication underlaying cellular networks [J]. IEEE transactions on communications, 2021, 69(11): 7790–7805. doi: 10.1109/TCOMM.2021.3102640
DOI |
7 | CAO Y S, LV T J, NI W, et al. Sum-rate maximization for multi-reconfigurable intelligent surface-assisted device-to-device communications [EB/OL]. [2023-01-20]. |
8 |
HUANG C W, ALEXANDROPOULOS G C, YUEN C, et al. Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces [C]//IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2019: 1–5. DOI: 10.1109/SPAWC.2019.8815412
DOI |
9 |
SHAFIN R, CHEN H, NAM Y H, et al. Self-tuning sectorization: Deep reinforcement learning meets broadcast beam optimization [J]. IEEE transactions on wireless communications, 2020, 19(6): 4038–4053. DOI: 10.1109/TWC.2020.2979446
DOI |
10 |
PENG H R, WANG L C, YE L G, et al. Long-lasting UAV-aided RIS communications based on SWIPT [C]//2022 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2022: 1844–1849. DOI: 10.1109/WCNC51071.2022.9771999
DOI |
11 |
HUANG C W, MO R H, YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning [J]. IEEE Journal on selected areas in communications, 2020, 38(8):1839–1850. DOI:10.1109/JSAC.2020.3000835
DOI |
12 | CESA-BIANCHI N, GENTILE C, LUGOSI G, et al. Boltzmann exploration done right [C]//The 31st International Conference on Neural Information Processing Systems. NIPS, 2017: 6287–6296 |
13 | PAN L, CAI Q P, HUANG L B. Softmax deep double deterministic policy gradients [C]//The 34th International Conference on Neural Information Processing Systems. NIPS, 2020: 11767–11777 |
14 |
AL-HOURANI A, KANDEEPAN S, LARDNER S. Optimal LAP altitude for maximum coverage [J]. IEEE wireless communications letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736
DOI |
15 |
WU Q Q, ZHANG S W, ZHENG B X, et al. Intelligent reflecting surface-aided wireless communications: A tutorial [J]. IEEE transactions on communications, 2021, 69(5): 3313–3351. DOI: 10.1109/TCOMM.2021.3051897
DOI |
16 |
WANG W H, YANG L, MENG A Q, et al. Resource allocation for IRS-aided JP-CoMP downlink cellular networks with underlaying D2D communications [J]. IEEE transactions on wireless communications, 2022, 21(6): 4295–4309. DOI: 10.1109/TWC.2021.3128711
DOI |
17 |
SHI Q J, RAZAVIYAYN M, LUO Z Q, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011: 3060–3063. DOI: 10.1109/ICASSP.2011.5946304
DOI |
[1] | ZHU Yuting, XU Zhiyu, ZHANG Hongtao. Cooperative Distributed Beamforming Design for Multi-RIS Aided Cell-Free Systems [J]. ZTE Communications, 2024, 22(2): 99-106. |
[2] | REN Min, XU Renyu, ZHU Ting. Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface [J]. ZTE Communications, 2023, 21(3): 3-10. |
[3] | WANG Yiji, WEN Dingzhu, MAO Yijie, SHI Yuanming. RIS-Assisted Federated Learning in Multi-Cell Wireless Networks [J]. ZTE Communications, 2023, 21(1): 25-37. |
[4] | JIA Haonan, HE Zhenqing, TAN Wanlong, RUI Hua, LIN Wei. Distributed Multi-Cell Multi-User MISO Downlink Beamforming via Deep Reinforcement Learning [J]. ZTE Communications, 2022, 20(4): 69-77. |
[5] | YUAN Yifei, GU Qi, WANG Anna, WU Dan, LI Ya. Recent Progress in Research and Development of Reconfigurable Intelligent Surface [J]. ZTE Communications, 2022, 20(1): 3-13. |
[6] | XU Yongjun, YANG Zhaohui, HUANG Chongwen, YUEN Chau, GUI Guan. Resource Allocation for Two‑Tier RIS‑Assisted Heterogeneous NOMA Networks [J]. ZTE Communications, 2022, 20(1): 36-47. |
[7] | SHAO Zhichao, YAN Wenjing, YUAN Xiaojun. Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1‑Bit ADCs and Oversampling [J]. ZTE Communications, 2022, 20(1): 48-56. |
[8] | ZHOU Mingyong, CHEN Xiangyu, TANG Wankai, KE Jun Chen, JIN Shi, CHENG Qiang, CUI Tie Jun. Dual‑Polarized RIS‑Based STBC Transmission with Polarization Coupling Analysis [J]. ZTE Communications, 2022, 20(1): 63-75. |
[9] | Qian Xu, Pinyi Ren, Qinghe Du, Gang Wu, Qiang Li, and Li Sun. Angle-Based Interference-Aware Routing Algorithm for Multicast overWireless D2D Networks [J]. ZTE Communications, 2014, 12(4): 30-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||