ZTE Communications ›› 2020, Vol. 18 ›› Issue (1): 7-17.DOI: 10.12142/ZTECOM.202001003
• Special Topic • Previous Articles Next Articles
XING Kaixuan1, LI Hui1(), YIN Feng1, MA Huajun1, HOU Hanxu2, XU Huanle2, HAN Yunghsiang S.2, LIU Ji1, SUN Tao3
Received:
2019-12-16
Online:
2020-03-25
Published:
2020-06-15
About author:
XING Kaixuan is a postgraduate student of Shenzhen Graduate School, Peking University, China. His research interests include new architectures and new generations of information communication technology.|LI Hui (Supported by:
XING Kaixuan, LI Hui, YIN Feng, MA Huajun, HOU Hanxu, XU Huanle, HAN Yunghsiang S., LIU Ji, SUN Tao. Prototype of Multi-Identifier SystemBased on Voting Consensus[J]. ZTE Communications, 2020, 18(1): 7-17.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202001003
Block | ||
---|---|---|
Final?Header | Body | |
Pre?Header | Contain all property of Pre-Header | |
The Commissioner node returns the superior ring signature C_time is processor timestamp C_sign is the commissioner signature of Pre-header and C_time | ||
Random function obtained using the RandomNum algorithm that determines the butler number for the next block. | ||
The times of cycle to generate a block | ||
Time of current block |
Table 1. Data structure for block
Block | ||
---|---|---|
Final?Header | Body | |
Pre?Header | Contain all property of Pre-Header | |
The Commissioner node returns the superior ring signature C_time is processor timestamp C_sign is the commissioner signature of Pre-header and C_time | ||
Random function obtained using the RandomNum algorithm that determines the butler number for the next block. | ||
The times of cycle to generate a block | ||
Time of current block |
Pre?Block | ||
---|---|---|
Pre?Header | Body | |
Unique ID of block, Hash the SHA-256 | ||
Pre?Header | Hash Value of previous block | |
The height of current block | ||
( | The height of special block next to the current block Especially when Special block generated every Usually | |
The times of cycle to generate a block | ||
( | Encapsulate the public key of the butler of the current block; used to prove the accounting attribution of the current block | |
Used to verify primitiveness and authenticity of all transactions | ||
… | Custom properties section |
Table 2. Data structure for pre-block
Pre?Block | ||
---|---|---|
Pre?Header | Body | |
Unique ID of block, Hash the SHA-256 | ||
Pre?Header | Hash Value of previous block | |
The height of current block | ||
( | The height of special block next to the current block Especially when Special block generated every Usually | |
The times of cycle to generate a block | ||
( | Encapsulate the public key of the butler of the current block; used to prove the accounting attribution of the current block | |
Used to verify primitiveness and authenticity of all transactions | ||
… | Custom properties section |
Registration Prefix | /Jason |
---|---|
Name | Jason |
Valid ID | E77669818 |
Public key | 54cd12s4d6g9mj |
Biometric information | fs283n2n812b59u0sk42 |
Phone | 9876070 |
Table 3. An example of the user application table
Registration Prefix | /Jason |
---|---|
Name | Jason |
Valid ID | E77669818 |
Public key | 54cd12s4d6g9mj |
Biometric information | fs283n2n812b59u0sk42 |
Phone | 9876070 |
Key | Value | Description |
---|---|---|
Pub_KEY | String | Pub key of user |
Prefix | String | Identifier prefix |
Level | Int | User permission level |
Real_msg | String | Real ID |
Timestamp | Double | Time |
Table 4. User information table
Key | Value | Description |
---|---|---|
Pub_KEY | String | Pub key of user |
Prefix | String | Identifier prefix |
Level | Int | User permission level |
Real_msg | String | Real ID |
Timestamp | Double | Time |
Key | Value | Description |
---|---|---|
Identifier | String | Resource |
RealAdd | String | Real Address |
Pub_KEY | String | Public Key |
Hash | String | Hash Value |
Timestamp | Double | Time stamp |
Table 5. Content in inter-translation table
Key | Value | Description |
---|---|---|
Identifier | String | Resource |
RealAdd | String | Real Address |
Pub_KEY | String | Public Key |
Hash | String | Hash Value |
Timestamp | Double | Time stamp |
The Number of Nodes | 10 | 50 | 100 | 150 | 200 | 250 | |
---|---|---|---|---|---|---|---|
PoV | Theoretical Results | 11?669 | 2?277 | 1?105 | 715 | 521 | 406 |
Experiment Results | 8?408 | 1?686 | 848 | 552 | 381 | 314 | |
Uniformization | 0.7205 | 0.7404 | 0.7674 | 0.772 | 0.7312 | 0.77 | |
PBFT | Theoretical Results | 11?457 | 1?427 | 330 | 116 | 52 | 27 |
Experiment Results | 8?305 | 1?083 | 257 | 84 | 40 | 20 | |
Uniformization | 0.7249 | 0.7589 | 0.7788 | 0.7241 | 0.7692 | 0.7407 | |
Ratio | Theoretical Results | 1.02 | 1.6 | 3.35 | 6.16 | 10.02 | 15.04 |
Experiment Results | 1.01 | 1.56 | 3.3 | 6.57 | 9.52 | 15.7 |
Table 6 Comparison between PBFT and PoV
The Number of Nodes | 10 | 50 | 100 | 150 | 200 | 250 | |
---|---|---|---|---|---|---|---|
PoV | Theoretical Results | 11?669 | 2?277 | 1?105 | 715 | 521 | 406 |
Experiment Results | 8?408 | 1?686 | 848 | 552 | 381 | 314 | |
Uniformization | 0.7205 | 0.7404 | 0.7674 | 0.772 | 0.7312 | 0.77 | |
PBFT | Theoretical Results | 11?457 | 1?427 | 330 | 116 | 52 | 27 |
Experiment Results | 8?305 | 1?083 | 257 | 84 | 40 | 20 | |
Uniformization | 0.7249 | 0.7589 | 0.7788 | 0.7241 | 0.7692 | 0.7407 | |
Ratio | Theoretical Results | 1.02 | 1.6 | 3.35 | 6.16 | 10.02 | 15.04 |
Experiment Results | 1.01 | 1.56 | 3.3 | 6.57 | 9.52 | 15.7 |
1 | NAKAMOTO S, BITCOIN A. A Peer⁃to⁃Peer Electronic Cash System [EB/OL]. (2008) [2019⁃12⁃25]. |
2 | CACHIN C. Architecture of the Hyperledger Blockchain Fabric [C]//Workshop on Distributed Cryptocurrencies and Consensus Ledgers. Chicago, USA, 2016, 310: 4 |
3 | CASTRO M, LISKOV B. Practical Byzantine Fault Tolerance [C]//OSDI. New Orleans, USA, 1999: 173–186 |
4 |
KIAYIAS A, RUSSELL A, DAVID B, et al. Ouroboros: A Provably Secure Proof⁃of⁃Stake Blockchain Protocol [C]//Proc. Annual International Cryptology Conference. Cham, Switzerland: Springer International Publishing, 2017: 357–388. DOI:10.1007/978⁃3⁃319⁃63688⁃7_12
DOI |
5 | KING S, NADAL S. PPcoin: Peer⁃to⁃Peer Crypto⁃Currency with Proof⁃of⁃Stake [EB/OL]. (2012⁃08⁃19) [2019⁃12⁃26]. |
6 | SCHWARTZ D, YOUNGS N, BRITTO A. The Ripple Protocol Consensus Algorithm [J]. Ripple Labs Inc White Paper, 2014: 1–8 |
7 | LOIBL A, NAAB J. Namecoin. Namecoin. Info. [EB/OL]. (2014) [2019⁃12⁃26]. |
8 | ALI M, NELSON J, SHEA R, et al. Blockstack: A Global Naming and Storage System Secured by Blockchains [C]//Annual Technical Conference. Denver, USA, 2016: 181–194 |
9 |
BENSHOOF B, ROSEN A, BOURGEOIS A G, et al. Distributed Decentralized Domain Name Service [C]//IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Chicago, USA: IEEE, 2016: 1279–1287.DOI:10.1109/ipdpsw.2016.109
DOI |
10 |
ZUPAN N, ZHANG K W, JACOBSEN H A. Hyperpubsub: a Decentralized, Permissioned, Publish/Subscribe Service Using Blockchains [C]//Proc. 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos. New York, USA: ACM, 2017: 15–16.DOI: 10.1145/3155016.3155018
DOI |
11 |
WU H Q. Reflections on the Reform of Network Architecture [J]. ZTE Technology Journal, 2019, 25(01): 2–4. DOI: 10.12142/ZTETJ.201901001
DOI |
12 |
LI H, WU J, XING K, et al. The Prototype and Testing Report of Multilateral and Multi⁃mode Identification Domain Management System [J]. Scientia Sinica Informationis, 2019, 49(09): 1186–1204. DOI: 10.1360/N112019⁃00070
DOI |
13 | LI H, LI K, CHEN Y, et al. Determining Consensus in a Decentralized Domain Name System: US Patent App. 15/997,710 [P]. 2018 |
14 | LI H, WANG K, LIN Z, et al. Systems and Methods for Managing Top⁃Level Domain Names Using Consortium Blockchain: US10178069B2,710 [P]. 2019 |
[1] | FENG Jianxin, PAN Yi, WU Xiao. Building a Stronger Foundation for Web3: Advantages of 5G Infrastructure [J]. ZTE Communications, 2024, 22(2): 3-10. |
[2] | CHEN Rui, LI Hui, LI Wuyang, BAI He, WANG Han, WU Naixing, FAN Ping, KANG Jian, DENG Selwyn, ZHU Xiang. MetaOracle: A High-Throughput Decentralized Oracle for Web 3.0-Empowered Metaverse [J]. ZTE Communications, 2024, 22(2): 11-18. |
[3] | MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang. Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain [J]. ZTE Communications, 2024, 22(2): 19-29. |
[4] | WU Zhihui, HONG Yuxuan, ZHOU Enyuan, LIU Lei, PEI Qingqi. Utilizing Certificateless Cryptography for IoT Device Identity Authentication Protocols in Web3 [J]. ZTE Communications, 2024, 22(2): 30-38. |
[5] | CAO Yinfeng, CAO Jiannong, WANG Yuqin, WANG Kaile, LIU Xun. Security in Edge Blockchains: Attacks and Countermeasures [J]. ZTE Communications, 2022, 20(4): 3-14. |
[6] | ZHAO Tian, LI Hui, YANG Xin, WANG Han, ZENG Ming, GUO Haisheng, WANG Dezheng. Differentially Authorized Deduplication System Based on Blockchain [J]. ZTE Communications, 2021, 19(2): 67-76. |
[7] | LIN Xinhua, ZHANG Jing, LI Qiang. Cluster Head Selection Algorithm for UAV Assisted Clustered IoT Network Utilizing Blockchain [J]. ZTE Communications, 2021, 19(1): 30-38. |
[8] | LEI Ao, Chibueze Ogah, Philip Asuquo, Haitham Cruickshank, SUN Zhili. A Secure Key Management Scheme for Heterogeneous Secure Vehicular Communication Systems [J]. ZTE Communications, 2016, 14(S0): 21-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||