1 |
SANG J, YUAN Y F, TANG W K, et al. Coverage enhancement by deploying RIS in 5G commercial mobile networks: field trials [J]. IEEE wireless communications, 2024, 31(1): 172–180. DOI: 10.1109/MWC.011.2200356
|
2 |
GAO N, HAN Y, LI N N, et al. When physical layer key generation meets RIS: opportunities, challenges, and road ahead [J]. IEEE wireless communications, 2024, 31(3): 355–361. DOI: 10.1109/MWC.013.2200538
|
3 |
MOARA-NKWE K, SHI Q, LEE G M, et al. A novel physical layer secure key generation and refreshment scheme for wireless sensor networks [J]. IEEE access, 2018, 6: 11374–11387. DOI: 10.1109/ACCESS.2018.2806423
|
4 |
MAURER U M. Secret key agreement by public discussion from common information [J]. IEEE transactions on information theory, 1993, 39(3): 733–742. DOI: 10.1109/18.256484
|
5 |
PREMNATH S N, JANA S, CROFT J, et al. Secret key extraction from wireless signal strength in real environments [J]. IEEE transactions on mobile computing, 2013, 12(5): 917–930. DOI: 10.1109/TMC.2012.63
|
6 |
LI G Y, HU A Q, ZHANG J Q, et al. High-agreement uncorrelated secret key generation based on principal component analysis preprocessing [J]. IEEE transactions on communications, 2018, 66(7): 3022–3034. DOI: 10.1109/TCOMM.2018.2814607
|
7 |
JI Z J, YEOH P L, ZHANG D Y, et al. Secret key generation for intelligent reflecting surface assisted wireless communication networks [J]. IEEE transactions on vehicular technology, 2021, 70(1): 1030–1034. DOI: 10.1109/TVT.2020.3045728
|
8 |
GU J, OUYANG C J, ZHANG X, et al. RIS-assisted multi-carrier secret key generation in static environments [J]. IEEE wireless communications letters, 2024, 13(10): 2777–2781. DOI: 10.1109/LWC.2024.3445268
|
9 |
ZHAO R, QIN Q, XU N Y, et al. SemKey: boosting secret key generation for RIS-assisted semantic communication systems [C]//The 96th Vehicular Technology Conference. IEEE, 2022: 1–5. DOI: 10.1109/VTC2022-Fall57202.2022.10013083
|
10 |
XU N Y, NAN G S, TAO X F. Passive eavesdropping can significantly slow down RIS-assisted secret key generation [C]//IEEE Global Communications Conference. IEEE, 2023: 3294–3299. DOI: 10.1109/GLOBECOM54140.2023.10437788
|
11 |
GAO N, YAO Y Z, JIN S, et al. Integrated communications and security: RIS-assisted simultaneous transmission and generation of secret keys [J]. IEEE transactions on information forensics and security, 2024, 19: 7573–7587. DOI: 10.1109/TIFS.2024.3436885
|
12 |
TANG J W, XU S H, YANG F, et al. Recent developments of transmissive reconfigurable intelligent surfaces: a review [J]. ZTE Communications, 2022, 20(1): 21–27. DOI: 10.12142/ZTECOM.202201004
|
13 |
LIU Y W, LIU X, MU X D, et al. Reconfigurable intelligent surfaces: principles and opportunities [J]. IEEE communications surveys & tutorials, 2021, 23(3): 1546–1577. DOI: 10.1109/COMST.2021.3077737
|
14 |
GAO N, QIN Z J, JING X J, et al. Anti-intelligent UAV jamming strategy via deep Q-networks [J]. IEEE transactions on communications, 2020, 68(1): 569–581. DOI: 10.1109/TCOMM.2019.2947918
|
15 |
LUONG N C, HOANG D T, GONG S M, et al. Applications of deep reinforcement learning in communications and networking: a survey [J]. IEEE communications surveys and tutorials, 2019, 21(4): 3133–3174
|
16 |
QIAN X, DI RENZO M, LIU J, et al. Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise [J]. IEEE wireless communications letters, 2021, 10(1): 77–81. DOI: 10.1109/LWC.2020.3021058
|
17 |
ZHANG H Q, LI X, GAO N, et al. A deep reinforcement learning approach to two-timescale transmission for RIS-aided multiuser MISO systems [J]. IEEE wireless communications letters, 2023, 12(8): 1444–1448. DOI: 10.1109/LWC.2023.3278171
|
18 |
LU T Y, CHEN L Q, ZHANG J Q, et al. Joint precoding and phase shift design in reconfigurable intelligent surfaces-assisted secret key generation [J]. IEEE transactions on information forensics and security, 2023, 18: 3251–3266. DOI: 10.1109/TIFS.2023.326888
|