ZTE Communications ›› 2023, Vol. 21 ›› Issue (1): 25-37.DOI: 10.12142/ZTECOM.202301004
• Special Topic • Previous Articles Next Articles
WANG Yiji, WEN Dingzhu(), MAO Yijie, SHI Yuanming
Received:
2022-12-04
Online:
2023-03-25
Published:
2023-03-22
About author:
WANG Yiji received his BS degree from Zhejiang University City College, China in 2020. He is currently pursuing his master’s degree with the School of Information Science and Technology, ShanghaiTech University, China. His research interests include federated learning and wireless communications.WANG Yiji, WEN Dingzhu, MAO Yijie, SHI Yuanming. RIS-Assisted Federated Learning in Multi-Cell Wireless Networks[J]. ZTE Communications, 2023, 21(1): 25-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202301004
Scheme | Error/dB |
---|---|
Without RIS | -52.77 |
Random PS | -53.16 |
Optimal PS | -53.91 |
Table 1 Comparison of downlink errors
Scheme | Error/dB |
---|---|
Without RIS | -52.77 |
Random PS | -53.16 |
Optimal PS | -53.91 |
Figure 6 Performance of different schemes in the proposed two-cell FL system: (a) training loss vs communication rounds; (b) test accuracy vs communication rounds
1 | LETAIEF K B, SHI Y M, LU J M, et al. Edge artificial intelligence for 6G: vision, enabling technologies, and applications [J]. IEEE journal on selected areas in communications, 2021, 40(1): 5–36. DOI: 10.1109/JSAC.2021.3126076 |
2 | LETAIEF K B, CHEN W, SHI Y M, et al. The roadmap to 6G: AI empowered wireless networks [J]. IEEE communications magazine, 2019, 57(8): 84–90. DOI: 10.1109/mcom.2019.1900271 |
3 | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications [J]. ACM transactions on intelligent systems and technology, 2019, 10(2): 1–19. DOI: 10.1145/3298981 |
4 | WEN D Z, JEON K J, HUANG K B. Federated dropout—a simple approach for enabling federated learning on resource constrained devices [J]. IEEE wireless communications letters, 2022, 11(5): 923–927. DOI: 10.1109/LWC.2022.3149783 |
5 | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]//20th International Conference on Artificial Intelligence and Statistics (AISTATS). JMLR, 2017: 1273–1282. DOI: 10.48550/arXiv.1602.05629 |
6 | XU W, YANG Z H, NG D W K, et al. Edge learning for B5G networks with distributed signal processing: semantic communication, edge computing, and wireless sensing [J]. IEEE journal of selected topics in signal processing, 2023: 1–31. DOI: 10.1109/jstsp.2023.3239189 |
7 | CHEN M Z, YANG Z H, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks [J]. IEEE transactions on wireless communications, 2021, 20(1): 269–283. DOI: 10.1109/TWC.2020.3024629 |
8 | YANG H H, LIU Z Z, QUEK T Q S, et al. Scheduling policies for federated learning in wireless networks [J]. IEEE transactions on communications, 2020, 68(1): 317–333. DOI: 10.1109/tcomm.2019.2944169 |
9 | YANG P, JIANG Y N, WANG T, et al. Over-the-air federated learning via second-order optimization [J]. IEEE transactions on wireless communications, 2022, 21(12): 10560–10575. DOI: 10.1109/TWC.2022.3185156 |
10 | NAZER B, GASTPAR M. Computation over multiple-access channels [J]. IEEE transactions on information theory, 2007, 53(10): 3498–3516. DOI: 10.1109/tit.2007.904785 |
11 | CHEN L, QIN X W, WEI G. A uniform-forcing transceiver design for over-the-air function computation [J]. IEEE wireless communications letters, 2018, 7(6): 942–945. DOI: 10.1109/LWC.2018.2840157 |
12 | YANG Y H, ZHOU Y, WU Y L, et al. Differentially private federated learning via reconfigurable intelligent surface [J]. IEEE Internet of Things journal, 2022, 9(20): 19728–19743. DOI: 10.1109/JIOT.2022.3168066 |
13 | WANG Z B, ZHAO Y P, ZHOU Y, et al. Over-the-air computation: foundations, technologies, and applications [EB/OL]. [2022-10-19]. |
14 | YANG K, JIANG T, SHI Y M, et al. Federated learning via over-the-air computation [J]. IEEE transactions on wireless communications, 2020, 19(3): 2022–2035. DOI: 10.1109/TWC.2019.2961673 |
15 | FANG W Z, YU Z Y, JIANG Y N, et al. Communication-efficient stochastic zeroth-order optimization for federated learning [J]. IEEE transactions on signal processing, 2022, 70: 5058–5073. DOI: 10.1109/TSP.2022.3214122 |
16 | FU M, SHI Y M, ZHOU Y. Federated learning via unmanned aerial vehicle [EB/OL]. [2022-10-20]. |
17 | LIM W Y B, GARG S, XIONG Z H, et al. UAV-assisted communication efficient federated learning in the era of the artificial intelligence of things [J]. IEEE network, 2021, 35(5): 188–195. DOI: 10.1109/MNET.002.2000334 |
18 | NI W L, LIU Y W, YANG Z H, et al. Federated learning in multi-RIS-aided systems [J]. IEEE Internet of Things journal, 2022, 9(12): 9608–9624. DOI: 10.1109/JIOT.2021.3130444 |
19 | WANG Z B, QIU J H, ZHOU Y, et al. Federated learning via intelligent reflecting surface [J]. IEEE transactions on wireless communications, 2022, 21(2): 808–822. DOI: 10.1109/twc.2021.3099505 |
20 | YANG K, SHI Y M, ZHOU Y, et al. Federated machine learning for intelligent IoT via reconfigurable intelligent surface [J]. IEEE network, 2020, 34(5): 16–22. DOI: 10.1109/MNET.011.2000045 |
21 | LIU H, YUAN X J, ZHANG Y J A. Joint communication-learning design for RIS-assisted federated learning [C]//IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2021: 1–6. DOI: 10.1109/ICCWorkshops50388.2021.9473672 |
22 | YIN T, LI L X, MA D H, et al. FLIGHT: federated learning with IRS for grouped heterogeneous training [J]. Journal of communications and information networks, 2022, 7(2): 135–144. DOI: 10.23919/jcin.2022.9815197 |
23 | HU L, WANG Z B, ZHU H B, et al. RIS-assisted over-the-air federated learning in millimeter wave MIMO networks [J]. Journal of communications and information networks, 2022, 7(2): 145–156. DOI: 10.23919/jcin.2022.9815198 |
24 | WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming [J]. IEEE transactions on wireless communications, 2019, 18(11): 5394–5409. DOI: 10.1109/TWC.2019.2936025 |
25 | FANG W Z, JIANG Y N, SHI Y M, et al. Over-the-air computation via reconfigurable intelligent surface [J]. IEEE transactions on communications, 2021, 69(12): 8612–8626. DOI: 10.1109/tcomm.2021.3114791 |
26 | HUANG C W, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication [J]. IEEE transactions on wireless communications, 2019, 18(8): 4157–4170. DOI: 10.1109/TWC.2019.2922609 |
27 | WEINBERGER K, AHMAD A A, SEZGIN A, et al. Synergistic benefits in IRS- and RS-enabled C-RAN with energy-efficient clustering [J]. IEEE transactions on wireless communications, 2022, 21(10): 8459–8475. DOI: 10.1109/TWC.2022.3166393 |
28 | ZHAI X F, HAN G J, CAI Y L, et al. Joint beamforming aided over-the-air computation systems relying on both BS-side and user-side reconfigurable intelligent surfaces [J]. IEEE transactions on wireless communications, 2022, 21(12): 10766–10779. DOI: 10.1109/TWC.2022.3187156 |
29 | WANG Z B, ZHOU Y, SHI Y M, et al. Interference management for over-the-air federated learning in multi-cell wireless networks [J]. IEEE journal on selected areas in communications, 2022, 40(8): 2361–2377. DOI: 10.1109/JSAC.2022.3180799 |
30 | PAN C H, REN H, WANG K Z, et al. Multicell MIMO communications relying on intelligent reflecting surfaces [J]. IEEE transactions on wireless communications, 2020, 19(8): 5218–5233. DOI: 10.1109/twc.2020.2990766 |
31 | LUO C H, LI X, JIN S, et al. Reconfigurable intelligent surface-assisted multi-cell MISO communication systems exploiting statistical CSI [J]. IEEE wireless communications letters, 2021, 10(10): 2313–2317. DOI: 10.1109/LWC.2021.3100427 |
32 | XIE H L, XU J, LIU Y F. Max-min fairness in IRS-aided multi-cell MISO systems via joint transmit and reflective beamforming [C]//IEEE International Conference on Communications (ICC). IEEE, 2020: 1–6. DOI: 10.1109/ICC40277.2020.9148858 |
33 | NI W L, LIU X, LIU Y W, et al. Resource allocation for multi-cell IRS-aided NOMA networks [J]. IEEE transactions on wireless communications, 2021, 20(7): 4253–4268. DOI: 10.1109/TWC.2021.3057232 |
34 | LI J, FU M, ZHOU Y, et al. Double-RIS assisted over-the-air computation [C]//IEEE Globecom Workshops (GC Wkshps). IEEE, 2022: 1–6. DOI: 10.1109/GCWkshps52748.2021.9682077 |
35 | ABARI O, RAHUL H, KATABI D, et al. AirShare: distributed coherent transmission made seamless [C]//IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015: 1742–1750. DOI: 10.1109/INFOCOM. 2015.7218555 |
36 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. DOI: 10.1109/5.726791 |
[1] | DING Yahao, SHIKH‑BAHAEI Mohammad, YANG Zhaohui, HUANG Chongwen, YUAN Weijie. Secure Federated Learning over Wireless Communication Networks with Model Compression [J]. ZTE Communications, 2023, 21(1): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||