ZTE Communications ›› 2025, Vol. 23 ›› Issue (3): 81-88.DOI: 10.12142/ZTECOM.202503009
• Research Papers • Previous Articles Next Articles
CUI Jian1(
), GU Ninglun1, CHANG Cheng1, SHI Hu2,3, YAN Baoluo2,3
Received:2025-02-21
Online:2025-09-25
Published:2025-09-11
About author:CUI Jian (cuijianwl@chinamobile.com) is an engineer at the Department of Networks, China Mobile Communications Group Co., Ltd. He received his BS and PhD degrees from the School of Electronics, Peking University, China in 2018 and 2023, respectively. He has published more than 20 papers in peer-reviewed journals and conferences, including IEEE Journal of Lightwave Technology, Optics Express, and Optical Fiber Communication Conference. His current research interests include optical networks, optical communication systems, and space-division multiplexed transmission techniques.CUI Jian, GU Ninglun, CHANG Cheng, SHI Hu, YAN Baoluo. Real-Time 7-Core SDM Transmission System Using Commercial 400 Gbit/s OTN Transceivers and Network Management System[J]. ZTE Communications, 2025, 23(3): 81-88.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202503009
Figure 1 Field-deployed MCF cable for our trial: (a) the route; (b) cross section of the 7-core fiber in the cable; (c) the length of each cable segment and the schematic diagram of cascading six MCFs for long-span transmission
| Diameter of Cladding/μm | Core-to-Core Distance/μm | Mode Field Diameter/μm | Dispersion Coefficient/(ps·nm-1·km-1) | Attenuation Coefficient/(dB/km) | Inter-Core Crosstalk/(dB/10 km) | Bending Loss withR=30 mm/(dB/100 turns) |
|---|---|---|---|---|---|---|
| 150 | 42 | 9.0 | ≤22 | ≤0.22 | ≤-50 | <0.1 |
Table 1 Partial fundamental characteristics of the 7-core fiber after cabling
| Diameter of Cladding/μm | Core-to-Core Distance/μm | Mode Field Diameter/μm | Dispersion Coefficient/(ps·nm-1·km-1) | Attenuation Coefficient/(dB/km) | Inter-Core Crosstalk/(dB/10 km) | Bending Loss withR=30 mm/(dB/100 turns) |
|---|---|---|---|---|---|---|
| 150 | 42 | 9.0 | ≤22 | ≤0.22 | ≤-50 | <0.1 |
| Parameter | Core 1 | Core 2 | Core 3 | Core 4 | Core 5 | Core 6 | Core 7 |
|---|---|---|---|---|---|---|---|
| Span loss | 37.0 | 35.7 | 29.6 | 34.6 | 36.0 | 35.0 | 35.4 |
| Inter-core crosstalk | -41.5 | -43.3 | -40.5 | -43.0 | -44.0 | -42.9 | -42.0 |
Table 2 Span loss and total inter-core crosstalk of the 106 km 7-core CDM link (Unit: dB)
| Parameter | Core 1 | Core 2 | Core 3 | Core 4 | Core 5 | Core 6 | Core 7 |
|---|---|---|---|---|---|---|---|
| Span loss | 37.0 | 35.7 | 29.6 | 34.6 | 36.0 | 35.0 | 35.4 |
| Inter-core crosstalk | -41.5 | -43.3 | -40.5 | -43.0 | -44.0 | -42.9 | -42.0 |
Figure 3 Measured BER values as a function of single-wavelength input power at (a) 1 549.72 nm and (b) 1 589.57 nm of the 7-core CDM transmission system
| [1] | ZHANG D C, ZUO M Q, CHEN H, et al. Technological prospection and requirements of 800G transmission systems for ultra-long-haul all-optical terrestrial backbone networks [J]. Journal of lightwave technology, 2023, 41(12): 3774–3782. DOI: 10.1109/JLT.2023.3267241 |
| [2] | RICHARDSON D J. Filling the light pipe [J]. Science, 2010, 330(6002): 327–328. DOI: 10.1126/science.1191708 |
| [3] | LI G F, BAI N, ZHAO N B, et al. Space-division multiplexing: the next frontier in optical communication [J]. Advances in optics and photonics, 2014, 6(4): 413–487. DOI: 10.1364/AOP.6.000413 |
| [4] | RADEMACHER G, LUÍS R S, PUTTNAM B J, et al. 1.53 peta-bit/s C-band transmission in a 55-mode fiber [C]//Proc. European Conference on Optical Communication (ECOC). IEEE, 2022: 1–4. DOI: 10.1109/ECOC50734.2022.9979005 |
| [5] | WEN H, XIA C, VELÁZQUEZ-BENÍTEZ A M, et al. First demonstration of six-mode PON achieving a record gain of 4 dB in upstream transmission loss budget [J]. Journal of lightwave technology, 2016, 34(8): 1990–1996. DOI: 10.1109/JLT.2015.2503121 |
| [6] | CUI J, GAO Y Y, HUANG S L, et al. Five-LP-mode IM/DD MDM transmission based on degenerate-mode-selective couplers with side-polishing processing [J]. Journal of lightwave technology, 2023, 41(10): 2991–2998. DOI: 10.1109/JLT.2023.3240877 |
| [7] | ZUO M Q, GE D W, GAO Y Y, et al. 3-mode real-time MDM transmission using single-mode OTN transceivers over 300 km weakly-coupled FMF [C]//Proc. Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2022. DOI: 10.1364/ofc.2022.m4b.4 |
| [8] | GAO Y Y, CUI J, JIA J C, et al. Weakly-coupled 7-core-2-LP-mode transmission using commercial SFP + transceivers enabled by all-fiber spatial multiplexer and demultiplexer [J]. Optics express, 2019, 27(11): 16271–16280. DOI: 10.1364/OE.27.016271 |
| [9] | BEPPU S, KIKUTA M, SOMA D, et al. Real-time 6-mode 19-core fiber transmission [C]//Proc. Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2023. DOI: 10.1364/OFC.2023.Tu3E.5 |
| [10] | ZHANG X, JI H L, LUO M, et al. 3.61 pbit/s S, C, and L-band transmission with 19-core single-mode fiber [J]. IEEE photonics technology letters, 2023, 35(15): 830–833. DOI: 10.1109/LPT.2023.3274310 |
| [11] | PUTTNAM B J, LUÍS R S, RADEMACHER G, et al. High-throughput and long-distance transmission with >120 nm S-, C-and L-band signal in a 125μm 4-core fiber [J]. Journal of lightwave technology, 2022, 40(6): 1633–1639. DOI: 10.1109/JLT.2021.3128725 |
| [12] | SAITOH K, MATSUO S. Multicore fiber technology [J]. Journal of lightwave technology, 2016, 34(1): 55–66. DOI: 10.1109/JLT.2015.2466440 |
| [13] | ALVARADO-ZACARIAS J C, ANTONIO-LOPEZ J E, HABIB M S, et al. Low-loss 19 core fan-in/fan-out device using reduced-cladding graded index fibers [C]//Proc. Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2019. DOI: 10.1364/OFC.2019.Th1H.4 |
| [14] | KREMP T, LIANG Y, MCCURDY A H. Less than 0.03 dB multicore fiber passive fusion splicing using new azimuthal alignment algorithm and 3-electrode arc-discharging system [C]//Proc. European Conference on Optical Communication (ECOC). IEEE, 2022. DOI: 10.1109/ECOC.2022.Tu3A.3 |
| [15] | FENG L P, ZHANG A X, GUO H, et al. Real-time 179.2 Tb/s transmission using commercial 400 Gb/s transceivers over 350 km multicore fiber [C]//Proc. Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2023. DOI: 10.1364/OFC.2023.Tu3E.6 |
| [16] | DI SCIULLO G, PUTTNAM B J, VAN DEN HOUT M, et al. 45.7 Tb/s over 12 053 km transmission with an all-multi-core recirculating-loop 4-core-fiber system [C]//Proc. Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2024. DOI:10.1364/OFC.2024.Th3E.2 |
| [17] | SOMA D, BEPPU S, MIYAGAWA Y, et al. 114 pbit/s∙km transmission using three vendor-installed 60-km standard cladding multi-core fiber spans with multiple fusion splicing [C]//Proc. Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2023. DOI: 10.1364/ofc.2023.Tu2C.5 |
| [18] | CHEN Y Y, XIAO Y G, CHEN S Y, et al. Field trials of communication and sensing system in space division multiplexing optical fiber cable [J]. IEEE communications magazine, 2023, 61(8): 182–188. DOI: 10.1109/MCOM.004.2200885 |
| [1] | Zhensheng Jia, Jianjun Yu, Hung-Chang Chien, Ze Dong, and Di Huo. Field Transmission of 100G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology [J]. ZTE Communications, 2012, 10(3): 28-38. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||