ZTE Communications ›› 2025, Vol. 23 ›› Issue (3): 3-14.DOI: 10.12142/ZTECOM.202503002
• Special Topic • Previous Articles Next Articles
GU Wei1,2, SHAO Shuo1,2, ZHOU Lingtao3, QIN Zhan1,2(
), REN Kui1,2
Received:2025-07-23
Online:2025-09-11
Published:2025-09-11
About author:GU Wei is currently pursuing a master's degree at the School of Cyber Science and Technology and the State Key Laboratory of Blockchain and Data Security, Zhejiang University, China. Before that, he received a BE degree in computer science and technology from Zhuoyue Honors College, Hangzhou Dianzi University, China in 2023. His research interests include LLM security and AI safety.Supported by:GU Wei, SHAO Shuo, ZHOU Lingtao, QIN Zhan, REN Kui. Poison-Only and Targeted Backdoor Attack Against Visual Object Tracking[J]. ZTE Communications, 2025, 23(3): 3-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202503002
Figure 1 Demonstration of different variants of the targeted attacks against VOT models: (a) tracking the object normally without an attack; (b) forcing the size of the predicted bounding box to be larger or smaller; (c) manipulating the predicted movement trajectory; (d) controlling the size and trajectory simultaneously
Figure 2 Pipeline of the poison-only and targeted backdoor attack against VOT models. In the dirty-label setting, the ground-truth label is directly shifted to the trigger pattern's location, explicitly training the model to treat the pattern as the object to track. In contrast, in the clean-label setting, the trigger pattern is overlaid on the real target, causing the model to learn the pattern as part of the target's appearance. As a result, during inference, the presence of the pattern alone can activate the backdoor and mislead the tracker
Figure 3 Comparison between the random frame poisoning (RFP) and the random video poisoning (RVP) attacks. RFP selects random frames from different videos while RVP selects all the frames from one video
| Dataset | Model | Metric | |||||
|---|---|---|---|---|---|---|---|
| 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | |||
| GOT10K | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.051 0.743 1.002 0.732 0.728 | 1.053 0.854 0.999 0.834 0.823 | 1.062 1.052 1.072 1.086 1.067 | 1.070 1.290 1.214 1.406 1.387 | 1.071 1.544 1.351 1.781 1.733 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.979 0.725 0.873 0.734 0.743 | 1.001 0.829 0.918 0.839 0.853 | 1.054 1.057 1.071 1.056 1.064 | 1.114 1.335 1.291 1.318 1.356 | 0.120 1.526 1.456 1.479 1.657 | |
| OTB100 | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.128 1.736 1.064 0.718 0.726 | 1.129 0.848 1.056 0.821 0.814 | 1.132 1.086 1.132 1.122 1.094 | 1.121 1.396 1.544 1.544 1.501 | 1.106 1.734 2.049 2.049 1.957 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.994 0.864 0.949 0.863 0.864 | 0.998 0.875 0.948 0.881 0.892 | 1.043 1.047 1.067 1.041 1.062 | 1.093 1.275 1.253 1.257 1.326 | 1.105 1.338 1.322 1.291 1.502 | |
Table 1 SR results of size-manipulation attacks
| Dataset | Model | Metric | |||||
|---|---|---|---|---|---|---|---|
| 0.90 | 0.95 | 1.00 | 1.05 | 1.10 | |||
| GOT10K | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.051 0.743 1.002 0.732 0.728 | 1.053 0.854 0.999 0.834 0.823 | 1.062 1.052 1.072 1.086 1.067 | 1.070 1.290 1.214 1.406 1.387 | 1.071 1.544 1.351 1.781 1.733 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.979 0.725 0.873 0.734 0.743 | 1.001 0.829 0.918 0.839 0.853 | 1.054 1.057 1.071 1.056 1.064 | 1.114 1.335 1.291 1.318 1.356 | 0.120 1.526 1.456 1.479 1.657 | |
| OTB100 | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.128 1.736 1.064 0.718 0.726 | 1.129 0.848 1.056 0.821 0.814 | 1.132 1.086 1.132 1.122 1.094 | 1.121 1.396 1.544 1.544 1.501 | 1.106 1.734 2.049 2.049 1.957 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.994 0.864 0.949 0.863 0.864 | 0.998 0.875 0.948 0.881 0.892 | 1.043 1.047 1.067 1.041 1.062 | 1.093 1.275 1.253 1.257 1.326 | 1.105 1.338 1.322 1.291 1.502 | |
| Dataset | Model | Metric | |||||
|---|---|---|---|---|---|---|---|
| fix | 0.1 | 0.2 | 0.3 | 0.4 | |||
| GOT10K | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.036 0.004 0.008 0.005 0.004 | 0.049 0.097 0.089 0.093 0.095 | 0.056 0.166 0.122 0.168 0.167 | 0.056 0.213 0.140 0.231 0.232 | 0.059 0.276 0.150 0.291 0.291 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.033 0.006 0.006 0.006 0.006 | 0.040 0.086 0.077 0.086 0.077 | 0.048 0.161 0.150 0.161 0.150 | 0.050 0.221 0.207 0.221 0.207 | 0.051 0.276 0.253 0.276 0.253 | |
| OTB100 | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.029 0.006 0.010 0.006 0.007 | 0.035 0.099 0.077 0.091 0.096 | 0.033 0.185 0.111 0.181 0.183 | 0.032 0.255 0.133 0.257 0.260 | 0.032 0.318 0.153 0.324 0.326 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.029 0.009 0.016 0.008 0.011 | 0.032 0.077 0.046 0.078 0.070 | 0.033 0.161 0.051 0.171 0.145 | 0.034 0.217 0.050 0.235 0.187 | 0.032 0.260 0.048 0.288 0.216 | |
Table 2 Slopes of trajectory-manipulation attacks under different β
| Dataset | Model | Metric | |||||
|---|---|---|---|---|---|---|---|
| fix | 0.1 | 0.2 | 0.3 | 0.4 | |||
| GOT10K | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.036 0.004 0.008 0.005 0.004 | 0.049 0.097 0.089 0.093 0.095 | 0.056 0.166 0.122 0.168 0.167 | 0.056 0.213 0.140 0.231 0.232 | 0.059 0.276 0.150 0.291 0.291 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.033 0.006 0.006 0.006 0.006 | 0.040 0.086 0.077 0.086 0.077 | 0.048 0.161 0.150 0.161 0.150 | 0.050 0.221 0.207 0.221 0.207 | 0.051 0.276 0.253 0.276 0.253 | |
| OTB100 | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.029 0.006 0.010 0.006 0.007 | 0.035 0.099 0.077 0.091 0.096 | 0.033 0.185 0.111 0.181 0.183 | 0.032 0.255 0.133 0.257 0.260 | 0.032 0.318 0.153 0.324 0.326 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.029 0.009 0.016 0.008 0.011 | 0.032 0.077 0.046 0.078 0.070 | 0.033 0.161 0.051 0.171 0.145 | 0.034 0.217 0.050 0.235 0.187 | 0.032 0.260 0.048 0.288 0.216 | |
| Dataset | Attack Mode | Shrink ( | Expand ( | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fix | Move ( | Fix | Move ( | |||||||||||
| GOT10K | Model | Metric | SR | Slope | IoU | SR | Slope | IoU | SR | Slope | IoU | SR | Slope | IoU |
| SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.040 0.672 0.784 0.671 0.644 | 0.039 0.004 0.018 0.006 0.006 | 0.294 0.529 0.432 0.535 0.558 | 1.050 0.680 0.840 0.671 0.649 | 0.050 0.097 0.069 0.092 0.093 | 0.190 0.517 0.313 0.525 0.538 | 1.186 1.756 1.766 2.082 2.003 | 0.042 0.008 0.013 0.008 0.009 | 0.390 0.668 0.664 0.763 0.755 | 1.160 1.723 1.698 2.054 1.977 | 0.042 0.088 0.082 0.086 0.087 | 0.313 0.631 0.609 0.736 0.718 | |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.995 0.710 0.883 0.719 0.747 | 0.037 0.011 0.028 0.010 0.012 | 0.302 0.489 0.363 0.484 0.472 | 1.015 0.733 0.952 0.743 0.797 | 0.040 0.075 0.040 0.076 0.066 | 0.182 0.433 0.209 0.430 0.380 | 1.116 1.552 1.455 1.511 1.668 | 0.040 0.017 0.018 0.017 0.012 | 0.373 0.572 0.535 0.559 0.623 | 1.096 1.492 1.370 1.430 1.611 | 0.039 0.052 0.038 0.048 0.056 | 0.290 0.494 0.420 0.469 0.542 | |
| OTB100 | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.094 0.704 0.832 0.684 0.672 | 0.030 0.005 0.017 0.007 0.007 | 0.277 0.504 0.412 0.524 0.535 | 1.119 0.706 0.897 0.707 0.694 | 0.034 0.098 0.057 0.092 0.095 | 0.117 0.494 0.251 0.497 0.501 | 1.186 1.867 1.873 2.330 2.204 | 0.032 0.007 0.013 0.008 0.010 | 0.398 0.712 0.701 0.853 0.824 | 1.164 1.821 1.712 2.286 2.140 | 0.032 0.098 0.076 0.090 0.096 | 0.324 0.675 0.600 0.803 0.779 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.014 0.874 0.977 0.874 0.903 | 0.030 0.014 0.027 0.013 0.018 | 0.283 0.377 0.310 0.379 0.362 | 1.041 0.895 1.023 0.897 0.948 | 0.033 0.065 0.033 0.066 0.053 | 0.109 0.290 0.118 0.289 0.235 | 1.113 1.335 1.311 1.295 1.453 | 0.032 0.025 0.028 0.027 0.022 | 0.376 0.472 0.468 0.455 0.529 | 1.102 1.266 1.252 1.237 1.370 | 0.031 0.042 0.033 0.039 0.043 | 0.300 0.393 0.363 0.376 0.430 | |
Table 3 SRs, slopes, and IoU of hybrid attacks
| Dataset | Attack Mode | Shrink ( | Expand ( | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fix | Move ( | Fix | Move ( | |||||||||||
| GOT10K | Model | Metric | SR | Slope | IoU | SR | Slope | IoU | SR | Slope | IoU | SR | Slope | IoU |
| SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.040 0.672 0.784 0.671 0.644 | 0.039 0.004 0.018 0.006 0.006 | 0.294 0.529 0.432 0.535 0.558 | 1.050 0.680 0.840 0.671 0.649 | 0.050 0.097 0.069 0.092 0.093 | 0.190 0.517 0.313 0.525 0.538 | 1.186 1.756 1.766 2.082 2.003 | 0.042 0.008 0.013 0.008 0.009 | 0.390 0.668 0.664 0.763 0.755 | 1.160 1.723 1.698 2.054 1.977 | 0.042 0.088 0.082 0.086 0.087 | 0.313 0.631 0.609 0.736 0.718 | |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 0.995 0.710 0.883 0.719 0.747 | 0.037 0.011 0.028 0.010 0.012 | 0.302 0.489 0.363 0.484 0.472 | 1.015 0.733 0.952 0.743 0.797 | 0.040 0.075 0.040 0.076 0.066 | 0.182 0.433 0.209 0.430 0.380 | 1.116 1.552 1.455 1.511 1.668 | 0.040 0.017 0.018 0.017 0.012 | 0.373 0.572 0.535 0.559 0.623 | 1.096 1.492 1.370 1.430 1.611 | 0.039 0.052 0.038 0.048 0.056 | 0.290 0.494 0.420 0.469 0.542 | |
| OTB100 | SiamFC++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.094 0.704 0.832 0.684 0.672 | 0.030 0.005 0.017 0.007 0.007 | 0.277 0.504 0.412 0.524 0.535 | 1.119 0.706 0.897 0.707 0.694 | 0.034 0.098 0.057 0.092 0.095 | 0.117 0.494 0.251 0.497 0.501 | 1.186 1.867 1.873 2.330 2.204 | 0.032 0.007 0.013 0.008 0.010 | 0.398 0.712 0.701 0.853 0.824 | 1.164 1.821 1.712 2.286 2.140 | 0.032 0.098 0.076 0.090 0.096 | 0.324 0.675 0.600 0.803 0.779 |
| SiamRPN++ | Benign RFP-D RFP-C RVP-D RVP-C | 1.014 0.874 0.977 0.874 0.903 | 0.030 0.014 0.027 0.013 0.018 | 0.283 0.377 0.310 0.379 0.362 | 1.041 0.895 1.023 0.897 0.948 | 0.033 0.065 0.033 0.066 0.053 | 0.109 0.290 0.118 0.289 0.235 | 1.113 1.335 1.311 1.295 1.453 | 0.032 0.025 0.028 0.027 0.022 | 0.376 0.472 0.468 0.455 0.529 | 1.102 1.266 1.252 1.237 1.370 | 0.031 0.042 0.033 0.039 0.043 | 0.300 0.393 0.363 0.376 0.430 | |
| [1] | KRISTAN M, MATAS J, LEONARDIS A, et al. The visual object tracking VOT2015 challenge results [C]//Proc. IEEE International Conference on Computer Vision Workshop (ICCVW). IEEE, 2015: 564–586. DOI: 10.1109/ICCVW.2015.79 |
| [2] | CHEN F, WANG X D, ZHAO Y X, et al. Visual object tracking: a survey [J]. Computer vision and image understanding, 2022, 222: 103508. DOI: 10.1016/j.cviu.2022.103508 |
| [3] | HONG L Y, YAN S L, ZHANG R R, et al. OneTracker: unifying visual object tracking with foundation models and efficient tuning [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2024: 19079–19091. DOI: 10.1109/CVPR52733.2024.01805 |
| [4] | CHEN X, PENG H W, WANG D, et al. SeqTrack: sequence to sequence learning for visual object tracking [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023: 14572–14581. DOI: 10.1109/CVPR52729.2023.01400 |
| [5] | CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks [J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(11): 13467–13488. DOI: 10.1109/TPAMI.2023.3290594 |
| [6] | TANG H, LIANG K J, GRAUMAN K, et al. Egotracks: a long-term egocentric visual object tracking dataset [C]//Advances in Neural Information Processing Systems 36. NeurIPS, 2023: 75716–75739 |
| [7] | CEN M B, JUNG C. Fully convolutional Siamese fusion networks for object tracking [C]//Proc. 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018: 3718–3722. DOI: 10.1109/ICIP.2018.8451102 |
| [8] | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. DOI: 10.1109/cvpr.2019.00441 |
| [9] | BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking [C]//Proc. IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 6181–6190. DOI: 10.1109/ICCV.2019.00628 |
| [10] | WEI X, BAI Y F, ZHENG Y C, et al. Autoregressive visual tracking [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023: 9697–9706. DOI: 10.1109/CVPR52729.2023.00935 |
| [11] | LI Y M, JIANG Y, LI Z F, et al. Backdoor learning: a survey [J]. IEEE transactions on neural networks and learning systems, 2024, 35(1): 5–22. DOI: 10.1109/TNNLS.2022.3182979 |
| [12] | CHEN Y K, SHAO S, HUANG E H, et al. Refine: inversion-free backdoor defense via model reprogramming[C]//International Conference on Learning Representations. ICLR, 2025: 1–28 |
| [13] | GU T Y, LIU K, DOLAN-GAVITT B, et al. BadNets: evaluating backdooring attacks on deep neural networks [J]. IEEE access, 2019, 7: 47230–47244 |
| [14] | WEI C, WANG Y, GAO K F, et al. PointNCBW: toward dataset ownership verification for point clouds via negative clean-label backdoor watermark [J]. IEEE transactions on information forensics and security, 2024, 20: 191–206. DOI: 10.1109/TIFS.2024.3492792 |
| [15] | ZHU R, TANG D, TANG S Y, et al. Gradient shaping: enhancing backdoor attack against reverse engineering [C]//Proc. 2024 Network and Distributed System Security Symposium. Internet Society, 2024. DOI: 10.14722/ndss.2024.24450 |
| [16] | LIN J Y, XU L, LIU Y Q, et al. Composite backdoor attack for deep neural network by mixing existing benign features [C]//Proc. 2020 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2020: 113–131. DOI: 10.1145/3372297.3423362 |
| [17] | LI Y Z, LI Y M, WU B Y, et al. Invisible backdoor attack with sample-specific triggers [C]//Proc. IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021: 16443–16452. DOI: 10.1109/ICCV48922.2021.01615 |
| [18] | LYU P Z, YUE C, LIANG R G, et al. A data-free backdoor injection approach in neural networks[C]//32nd USENIX Conference on Security Symposium. USENIX, 2023: 2671–2688 |
| [19] | LI Y Z, LI T L, CHEN K J, et al. Badedit: backdooring large language models by model editing [C]//International Conference on Learning Representations. ICLR, 2024: 1–18 |
| [20] | PEI H Z, JIA J Y, GUO W B, et al. TextGuard: provable defense against backdoor attacks on text classification [C]//Proc. 2024 Network and Distributed System Security Symposium. Internet Society, 2024. DOI: 10.14722/ndss.2024.24090 |
| [21] | SHEN L J, JI S L, ZHANG X H, et al. Backdoor pre-trained models can transfer to all [C]//Proc. 2021 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2021: 3141–3158. DOI: 10.1145/3460120.3485370 |
| [22] | LI Y M, ZHONG H X, MA X J, et al. Few-shot backdoor attacks on visual object tracking [C]//International Conference on Learning Representations. ICLR, 2022: 1–21 |
| [23] | CHENG Z Y, WU B Y, ZHANG Z Y, et al. TAT: targeted backdoor attacks against visual object tracking [J]. Pattern recognition, 2023, 142: 109629. DOI: 10.1016/j.patcog.2023.109629 |
| [24] | HUANG B, YU J, CHEN Y, et al. BadTrack: a poison-only backdoor attack on visual object tracking [C]//Proc. 37th International Conference on Neural Information Processing Systems. NIPS, 2023: 41778–41796 |
| [25] | ADRIAN A I, ISMET P, PETRU P. An overview of intelligent surveillance systems development [C]//Proc. International Symposium on Electronics and Telecommunications (ISETC). IEEE, 2018: 1–6. DOI: 10.1109/ISETC.2018.8584003 |
| [26] | LU J H, HUANG D, WANG Y H, et al. Scaling and occlusion robust athlete tracking in sports videos [C]//Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 1526–1530. DOI: 10.1109/ICASSP.2016.7471932 |
| [27] | WENG X S, WANG J R, HELD D, et al. 3D multi-object tracking: a baseline and new evaluation metrics [C]//Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10359–10366. DOI: 10.1109/IROS45743.2020.9341164 |
| [28] | WANG J S, TAO B, GONG Z Y, et al. A mobile robotic measurement system for large-scale complex components based on optical scanning and visual tracking [J]. Robotics and computer-integrated manufacturing, 2021, 67: 102010. DOI: 10.1016/j.rcim.2020.102010 |
| [29] | MARVASTI-ZADEH S M, CHENG L, GHANEI-YAKHDAN H, et al. Deep learning for visual tracking: a comprehensive survey [J]. IEEE transactions on intelligent transportation systems, 2021, 23(5): 3943–3968. DOI: 10.1109/TITS.2020.3046478 |
| [30] | CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification [C]//Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 05. IEEE, 2005: 539–546. DOI: 10.1109/CVPR.2005.202 |
| [31] | CHEN X, YAN B, ZHU J W, et al. Transformer tracking [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 1571–1580. DOI: 10.1109/CVPR46437.2021.00803 |
| [32] | XU X, HUANG K Z, LI Y M, et al. Towards reliable and efficient backdoor trigger inversion via decoupling benign features [C]//International Conference on Learning Representations. ICLR, 2024: 1–25 |
| [33] | LI C J, PANG R, CAO B C, et al. On the difficulty of defending contrastive learning against backdoor attacks [C]//33rd USENIX Security Symposium. USENIX, 2024: 2901–2918 |
| [34] | HUANG K Z, LI Y M, WU B Y, et al. Backdoor defense via decoupling the training process [C]//International Conference on Learning Representations. ICLR, 2022: 1–25 |
| [35] | LI S F, LIU H, DONG T, et al. Hidden backdoors in human-centric language models [C]//Proc. 2021 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2021: 3123–3140. DOI: 10.1145/3460120.3484576 |
| [36] | HUANG H, ZHAO Z Y, BACKES M, et al. Composite backdoor attacks against large language models [C]//Proc. Findings of the Association for Computational Linguistics. NAACL, 2024: 1459–1472. DOI: 10.18653/v1/2024.findings-naacl.94 |
| [37] | YANG W Y, SHAO S, YANG Y, et al. Watermarking in secure federated learning: a verification framework based on client-side backdooring [J]. ACM transactions on intelligent systems and technology, 2024, 15(1): 1–25. DOI: 10.1145/3630636 |
| [38] | SHAO S, YANG W Y, GU H L, et al. FedTracker: furnishing ownership verification and traceability for federated learning model [J]. IEEE transactions on dependable and secure computing, 2025, 22(1): 114–131. DOI: 10.1109/TDSC.2024.3390761 |
| [39] | LI Y M, YAN K Y, SHAO S, et al. CBW: towards dataset ownership verification for speaker verification via clustering-based backdoor watermarking [EB/OL]. (2025-03-02)[2025-07-15]. |
| [40] | ZHAI T Q, LI Y M, ZHANG Z Q, et al. Backdoor attack against speaker verification [C]//Proc. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 2560–2564. DOI: 10.1109/ICASSP39728.2021.9413468 |
| [41] | HAN X S, WU Y T, ZHANG Q J, et al. Backdooring multimodal learning [C]//Proc. IEEE Symposium on Security and Privacy (SP). IEEE, 2024: 3385–3403. DOI: 10.1109/SP54263.2024.00031 |
| [42] | XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines [C]//Proc. AAAI conference on artificial intelligence. AAAI, 2020: 12549–12556. DOI: 10.1609/aaai.v34i07.6944 |
| [43] | WU Y, LIM J, YANG M H. Object tracking benchmark [J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1834–1848. DOI: 10.1109/TPAMI.2014.2388226 |
| [44] | HUANG L H, ZHAO X, HUANG K Q. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild [J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(5): 1562–1577. DOI: 10.1109/TPAMI.2019.2957464 |
| [45] | FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 5369–5378. DOI: 10.1109/CVPR.2019.00552 |
| [46] | SHAO S, LI Y M, YAO H W, et al. Explanation as a watermark: towards harmless and multi-bit model ownership verification via watermarking feature attribution [C]//Proc. 2025 Network and Distributed System Security Symposium. Internet Society, 2025. DOI: 10.14722/ndss.2025.230338 |
| [47] | REN K, YANG Z Q, LU L, et al. Sok: on the role and future of AIGC watermarking in the era of gen-AI [EB/OL]. (2024-11-18)[2025-07-15]. |
| [48] | LI Y M, ZHU M Y, YANG X, et al. Black-box dataset ownership verification via backdoor watermarking [J]. IEEE transactions on information forensics and security, 2023, 18: 2318–2332. DOI: 10.1109/TIFS.2023.3265535 |
| [49] | LI Y M, SHAO S, HE Y, et al. Rethinking data protection in the (generative) artificial intelligence era. [EB/OL]. (2025-07-03)[2025-07-15]. |
| [1] | LU Ping, FENG Daquan, SHI Wenzhe, LI Wan, LIN Jiaxin. Key Techniques and Challenges in NeRF-Based Dynamic 3D Reconstruction [J]. ZTE Communications, 2025, 23(3): 71-80. |
| [2] | FANG Yuming, ZHANG Xiaoqiang. Visual Attention Modeling inCompressed Domain:From Image Saliency Detection toVideo Saliency Detection [J]. ZTE Communications, 2019, 17(1): 31-37. |
| [3] | Xinhua Dong, Ruixuan Li, Wanwan Zhou, Dongjie Liao, and Shuoyi Zhao. Data Security and Privacy in Cloud Storage [J]. ZTE Communications, 2013, 11(2): 18-23. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||