ZTE Communications ›› 2025, Vol. 23 ›› Issue (2): 96-102.DOI: 10.12142/ZTECOM.202502010
• Research Papers • Previous Articles Next Articles
RUAN Junhui, JIANG Chengxiang, XU Shengli, WANG Yongjin, SHI Fan()
Received:
2024-10-20
Online:
2025-06-25
Published:
2025-06-10
About author:
RUAN Junhui is currently pursuing his bachelor’s degree at the School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, China. His research interests include optical fiber sensing, GaN optoelectronics sensors, and analog circuit design.Supported by:
RUAN Junhui, JIANG Chengxiang, XU Shengli, WANG Yongjin, SHI Fan. GaN-Based Optoelectronic Impact Force Sensor[J]. ZTE Communications, 2025, 23(2): 96-102.
Figure 1 (a) Schematic diagram of the sensor; (b) microphotographs of the physical encapsulation: three kinds of packaged PDMS structures with a thickness of (c) 2.04 mm, (d) 3.59 mm and (e) 4.76 mm, respectively; (f) optical images of the device; (g) LED with biased current at 10 mA;(h) diagram of the experimental setup
Figure 2 (a) I-V characteristic of the LED, where the inset shows the output power versus the driven current; (b) I-V curve of PD at different injection currents of LED; (c) Photocurrent response of PD under different currents of LED; (d) RS spectra of PD and the electroluminescence spectra of LED
Figure 5 Photocurrent response for Sample #1 under impact forces of (a) 3.8 N, (b) 7.3 N, and (c) 11 N; for Sample #2 under impact forces of (d) 12.5 N, (e) 17 N, and (f) 20.5 N; for Sample #3 under impact forces of (g) 23 N, (h) 32 N, and (i) 35 N
Figure 6 (a) Long-time photocurrent monitor of the sensor with Sample #1; (b) relative photocurrent response of the sensors as functions of impact forces
Method | Linear Range | Sensitivity | Structure Size |
---|---|---|---|
Piezoelectric[ | 0.2–1.4 N | 1.2 V/N | 4×4 sensor array (each one: 6×6 mm2) |
Capacitive[ | 0.1–1N | 0.42 V/N | 122×70 mm2 |
Capacitive[ | 0.5–2 N | N/A | 3×0.6×20 mm3 |
Capacitive[ | 0–9 N | 2.8% per newton | 22×22×2 mm3 |
Fabry-Perot interferometer[ | 0–215.4 μN | 0.221 pm/μN | 20–40 mm |
Optoelectronic[ | 0–40 kPa | 0.2 kPa-1 | 50×50 mm2 |
Current work | 0–35 N | 2.96% per newton | 2.7×1.8×0.2 mm3 |
Table 1 Performance comparison with other force sensors
Method | Linear Range | Sensitivity | Structure Size |
---|---|---|---|
Piezoelectric[ | 0.2–1.4 N | 1.2 V/N | 4×4 sensor array (each one: 6×6 mm2) |
Capacitive[ | 0.1–1N | 0.42 V/N | 122×70 mm2 |
Capacitive[ | 0.5–2 N | N/A | 3×0.6×20 mm3 |
Capacitive[ | 0–9 N | 2.8% per newton | 22×22×2 mm3 |
Fabry-Perot interferometer[ | 0–215.4 μN | 0.221 pm/μN | 20–40 mm |
Optoelectronic[ | 0–40 kPa | 0.2 kPa-1 | 50×50 mm2 |
Current work | 0–35 N | 2.96% per newton | 2.7×1.8×0.2 mm3 |
1 | CHENG M, ZHU G T, ZHANG F, et al. A review of flexible force sensors for human health monitoring [J]. Journal of advanced research, 2020, 26: 53–68. DOI: 10.1016/j.jare.2020.07.001 |
2 | KENRY, YEO J C, LIM C T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications [J]. Microsystems and nanoengineering, 2016, 2: 16043. DOI: 10.1038/micronano.2016.43 |
3 | PHAM T H, CARON S, KHEDDAR A. Multicontact interaction force sensing from whole-body motion capture [J]. IEEE transactions on industrial informatics, 2018, 14(6): 2343–2352 |
4 | GAO L, ZHOU C Y, XIAO H, et al. Continuous vertical wheel-rail force reconstruction method based on the distributed Acoustic sensing technology [J]. Measurement, 2022, 197: 111297. DOI: 10.1016/j.measurement.2022.111297 |
5 | CURRY E J, KE K, CHORSI M T, et al. Biodegradable piezoelectric force sensor [J]. Proceedings of the national academy of sciences of the United States of America, 2018, 115(5): 909–914. DOI: 10.1073/pnas.1710874115 |
6 | EMAMIAN S, NARAKATHU B B, CHLAIHAWI A A, et al. Screen printing of flexible piezoelectric based device on polyethylene terephthalate (PET) and paper for touch and force sensing applications [J]. Sensors and actuators A: physical, 2017, 263: 639–647. DOI: 10.1016/j.sna.2017.07.045 |
7 | GAO S, ARCOS V, NATHAN A. Piezoelectric vs. capacitive based force sensing in capacitive touch panels [J]. IEEE access, 2016, 4: 3769–3774 |
8 | KIM K, PARK J, SUH J H, et al. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments [J]. Sensors and actuators A: physical, 2017, 263: 493–500. DOI: 10.1016/j.sna.2017.07.020 |
9 | ZHU Y L, CHEN X, CHU K M, et al. Carbon black/PDMS based flexible capacitive tactile sensor for multi-directional force sensing [J]. Sensors, 2022, 22(2): 628. DOI: 10.3390/s22020628 |
10 | SU H, IORDACHITA I I, TOKUDA J, et al. Fiber optic force sensors for MRI-guided interventions and rehabilitation: a review [J]. IEEE sensors journal, 2017, 17(7): 1952–1963. DOI: 10.1109/JSEN.2017.2654489 |
11 | YUAN W H, YANG Z R, CUI M J, et al. A ring core fiber sensor based on Mach-Zehnder interferometer for transversal force sensing with solvable temperature cross sensitivity [J]. IEEE sensors journal, 2023, 23(4): 3615–3622. DOI: 10.1109/JSEN.2023.3234906 |
12 | LEE C W, LEE J H, SEOK H. Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer [J]. Scientific reports, 2020, 10: 17496. DOI: 10.1038/s41598-020-74629-1 |
13 | XIONG L, JIANG G Z, GUO Y X, et al. A three-dimensional fiber Bragg grating force sensor for robot [J]. IEEE sensors journal, 2018, 18(9): 3632–3639. DOI: 10.1109/JSEN.2018.2812820 |
14 | LAI W J, CAO L, LIU J J, et al. A three-axial force sensor based on fiber Bragg gratings for surgical robots [J]. IEEE/ASME transactions on mechatronics, 2022, 27(2): 777–789. DOI: 10.1109/TMECH.2021.3071437 |
15 | GONG Y, YU C B, WANG T T, et al. Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer [J]. Optics express, 2014, 22(3): 3578–3584. DOI: 10.1364/OE.22.003578 |
16 | DASH J N, LIU Z Y, GUNAWARDENA D S, et al. Fabry-Perot cavity-based contact force sensor with high precision and a broad operational range [J]. Optics letters, 2019, 44(14): 3546–3549. DOI: 10.1364/OL.44.003546 |
17 | XIE E Y, CHEN C, OUYANG C S, et al. GaN-based series hybrid LED array: a dual-function light source with illumination and high-speed visible light communication capabilities [J]. Journal of lightwave technology, 2024, 42(1): 243–250. DOI: 10.1109/JLT.2023.3303779 |
18 | FLACK T J, PUSHPAKARAN B N, BAYNE S B. GaN technology for power electronic applications: a review [J]. Journal of electronic materials, 2016, 45(6): 2673–2682. DOI: 10.1007/s11664-016-4435-3 |
19 | ZHU S J, SHAN X Y, LIN R Z, et al. Characteristics of GaN-on-Si green micro-LED for wide color gamut display and high-speed visible light communication [J]. ACS photonics, 2023, 10(1): 92–100. DOI: 10.1021/acsphotonics.2c01028 |
20 | CHANG Y H, HUANG Y M, LIOU F J, et al. 2.805 Gbit/s high-bandwidth phosphor white light visible light communication utilizing an InGaN/GaN semipolar blue micro-LED [J]. Optics express, 2022, 30(10): 16938–16946. DOI: 10.1364/OE.455312 |
21 | YU H B, MEMON M H, WANG D H, et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm [J]. Optics letters, 2021, 46(13): 3271–3274. DOI: 10.1364/OL.431933 |
22 | MEMON M H, YU H B, LUO Y M, et al. A three-terminal light emitting and detecting diode [J]. Nature electronics, 2024, 7(4): 279–287. DOI: 10.1038/s41928-024-01142-y |
23 | YIN J H, YANG H Y, LUO Y M, et al. III-nitride microsensors for 360° angle detection [J]. IEEE electron device letters, 2022, 43(3): 458–461. DOI: 10.1109/LED.2022.3148232 |
24 | YU B L, LUO Y M, CHEN L, et al. An optical humidity sensor: a compact photonic chip integrated with artificial opal [J]. Sensors and actuators B: chemical, 2021, 349: 130763. DOI: 10.1016/j.snb.2021.130763 |
25 | YU B L, LUO Y M, LI J, et al. Interface engineering in chip-scale GaN optical devices for near-hysteresis-free hydraulic pressure sensing [J]. ACS applied materials & interfaces, 2022, 14(33): 38351–38357. DOI: 10.1021/acsami.2c09291 |
26 | QIN F F, LU X Y, CHEN Y, et al. Concentration sensing system with monolithic InGaN/GaN photonic chips [J]. Chinese optics letters, 2024, 22(6): 062501. DOI: 10.3788/col202422.062501 |
27 | AN X S, LUO Y M, YU B L, et al. A chip-scale GaN-based optical pressure sensor with microdome-patterned polydimethylsiloxane (PDMS) [J]. IEEE electron device letters, 2021, 42(10): 1532–1535. DOI: 10.1109/LED.2021.3103891 |
28 | ZHAN J, ZHU L, HE Z, et al. Impact force sensors based on GaN optical devices with micropatterned PDMS sponges [J]. IEEE sensors journal, 2023, 23(17): 19226–19231. DOI: 10.1109/JSEN.2023.3295931 |
29 | RAMUZ M, TEE B C, TOK J B, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics [J]. Advanced materials (Deerfield Beach, Fla.), 2012, 24(24): 3223–3227 |
[1] | ZHANG Hao, YE Ziqi, YUAN Jialei, LIU Pengzhan, WANG Yongjin. Monolithically Integrating a 180° Bent Waveguide into a III-Nitride Optoelectronic On-Chip System [J]. ZTE Communications, 2024, 22(4): 40-45. |
[2] | Chul Woo Byeon and Chul Soon Park. Low-Power High-Efficiency Multi-Gigabit 60 GHz Transceiver Systems Routing in Vehicular Environments [J]. ZTE Communications, 2016, 14(S1): 20-24. |
[3] | HU Jie, ZHANG Yitian, YU Qin, and YANG Kun. Towards Practical Implementation of Data and Energy Integrated Networks [J]. ZTE Communications, 2016, 14(3): 45-54. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||