1 |
KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning [J]. Foundations and trends® in machine learning, 2021, 14(1–2): 1–210. DOI: 10.1561/2200000083
|
2 |
YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications [J]. ACM transactions on intelligent systems and technology (TIST), 2019, 10(2): 1–19. DOI: 10.1145/3298981
|
3 |
CHOUDHURY A, PATRA A. Secure multi-party computation against passive adversaries [M]. Cham: Springer International Publishing, 2022. DOI: 10.1007/978-3-031-12164-7
|
4 |
OU W, ZENG J H, GUO Z J, et al. A homomorphic-encryption-based vertical federated learning scheme for rick management [J]. Computer science and information systems, 2020, 17(3): 819–834. DOI: 10.2298/csis190923022o
|
5 |
WANG C, LIANG J, HUANG M, et al. Hybrid differentially private federated learning on vertically partitioned data [J]. 2020. DOI: 10.48550/arXiv.2009.02763
|
6 |
HE D J, DU R M, ZHU S S, et al. Secure logistic regression for vertical federated learning [J]. IEEE Internet computing, 2022, 26(2): 61–68. DOI: 10.1109/MIC.2021.3138853
|
7 |
NI X, XU X L, LYU L J, et al. A vertical federated learning framework for graph convolutional network [EB/OL]. (2021-06-22)[2023-06-13].
|
8 |
YANG S W, REN B, ZHOU X H, et al. Parallel distributed logistic regression for vertical federated learning without third-party coordinator [EB/OL]. (2019-11-22)[2023-06-13].
|
9 |
LI Q B, WU Z M, CAI Y Z, et al. FedTree: a federated learning system for trees [C]//Proc. Machine Learning and Systems 5. MLSys, 2023
|
10 |
XIE L C, LIU J Q, LU S T, et al. An efficient learning framework for federated XGBoost using secret sharing and distributed optimization [J]. ACM transactions on intelligent systems and technology, 2022, 13(5): 1–28. DOI: 10.1145/3523061
|
11 |
XU R H, BARACALDO N, ZHOU Y, et al. FedV: privacy-preserving federated learning over vertically partitioned data [C]//Proc. 14th ACM Workshop on Artificial Intelligence and Security. ACM, 2021. DOI: 10.1145/3474369.3486872
|
12 |
YANG K, FAN T, CHEN T, et al. A quasi-newton method based vertical federated learning framework for logistic regression [EB/OL]. (2019-12-01)[2023-07-11].
|
13 |
FANG W J, ZHAO D R, TAN J, et al. Large-scale secure XGB for vertical federated learning [C]//Proc. 30th ACM International Conference on Information & Knowledge Management. ACM, 2021. DOI: 10.1145/3459637.3482361
|
14 |
CHEN W J, MA G Q, FAN T, et al. Secureboost+: a high performance gradient boosting tree framework for large scale vertical federated learning[EB/OL]. (2021-10-21)[2023-07-12].
|
15 |
SHI H R, XU Y H, JIANG Y L, et al. Efficient asynchronous multi-participant vertical federated learning [J]. IEEE transactions on big data, 2024, 10(6): 940–952. DOI: 10.1109/TBDATA.2022.3201729
|
16 |
WU Y C, CAI S F, XIAO X K, et al. Privacy-preserving vertical federated learning for tree-based models [J]. Proceedings of the VLDB endowment, 2020, 13(12): 2090–2103. DOI: 10.14778/3407790.34078112020 .
|
17 |
HUANG Y M, FENG X Y, WANG W W, et al. EFMVFL: an efficient and flexible multi-party vertical federated learning without a third party [EB/OL]. (2022-01-17)[2023-07-15].
|
18 |
ABSPOEL M, DALSKOV A, ESCUDERO D, et al. An efficient passive-to-active compiler for honest-majority MPC over rings [C]//International Conference on Applied Cryptography and Network Security. ACNS, 2021: 122–152. DOI: /10.1007/978-3-030-78375-4_6
|