ZTE Communications ›› 2024, Vol. 22 ›› Issue (4): 78-88.DOI: 10.12142/ZTECOM.202404011
• Research Papers • Previous Articles Next Articles
YUAN Lang1(), HUI Chen1, WU Yanfeng1, LIAO Ronghua1, JIANG Feng2, GAO Ying3
Received:
2023-07-29
Online:
2024-12-20
Published:
2024-12-03
About author:
YUAN Lang (1190201114@stu.hit.edu.cn) is now a senior student at Harbin Institute of Technology (HIT), China. He is working at the Research Center of Intelligent Interface and Human-Computer Interaction, HIT. His research interests include deep learning, image coding, and compressive sensing.Supported by:
YUAN Lang, HUI Chen, WU Yanfeng, LIAO Ronghua, JIANG Feng, GAO Ying. Video Enhancement Network Based on CNN and Transformer[J]. ZTE Communications, 2024, 22(4): 78-88.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202404011
Class | Video Sequence | Frames | Resolution | FPS | Bit Depth |
---|---|---|---|---|---|
Class A1 | Tango2 | 294 | 3 840 | 60 | 10 |
FoodMarket4 | 300 | 3 840 | 60 | 10 | |
Campfire | 300 | 3 840 | 30 | 10 | |
Class A2 | CatRobot | 300 | 3 840 | 60 | 10 |
DaylightRoad2 | 300 | 3 840 | 60 | 10 | |
ParkRunning3 | 300 | 3 840 | 50 | 10 | |
Class B | MarketPlace | 600 | 1 920 | 60 | 10 |
RitualDance | 600 | 1 920 | 60 | 10 | |
Cactus | 500 | 1 920 | 50 | 8 | |
BasketballDrive | 500 | 1 920 | 50 | 8 | |
BQTerrace | 500 | 1 920 | 60 | 8 | |
Class C | RaceHorses | 300 | 832 | 30 | 8 |
BQMall | 600 | 832 | 60 | 8 | |
PartyScene | 500 | 832 | 50 | 8 | |
BasketballDrill | 500 | 832 | 50 | 8 | |
Class D | RaceHorses | 300 | 410 | 30 | 8 |
BQSquare | 600 | 410 | 60 | 8 | |
BlowingBubbles | 500 | 410 | 50 | 8 | |
BasketballPass | 500 | 410 | 50 | 8 |
Table 1 Standard testing sequences in CTC
Class | Video Sequence | Frames | Resolution | FPS | Bit Depth |
---|---|---|---|---|---|
Class A1 | Tango2 | 294 | 3 840 | 60 | 10 |
FoodMarket4 | 300 | 3 840 | 60 | 10 | |
Campfire | 300 | 3 840 | 30 | 10 | |
Class A2 | CatRobot | 300 | 3 840 | 60 | 10 |
DaylightRoad2 | 300 | 3 840 | 60 | 10 | |
ParkRunning3 | 300 | 3 840 | 50 | 10 | |
Class B | MarketPlace | 600 | 1 920 | 60 | 10 |
RitualDance | 600 | 1 920 | 60 | 10 | |
Cactus | 500 | 1 920 | 50 | 8 | |
BasketballDrive | 500 | 1 920 | 50 | 8 | |
BQTerrace | 500 | 1 920 | 60 | 8 | |
Class C | RaceHorses | 300 | 832 | 30 | 8 |
BQMall | 600 | 832 | 60 | 8 | |
PartyScene | 500 | 832 | 50 | 8 | |
BasketballDrill | 500 | 832 | 50 | 8 | |
Class D | RaceHorses | 300 | 410 | 30 | 8 |
BQSquare | 600 | 410 | 60 | 8 | |
BlowingBubbles | 500 | 410 | 50 | 8 | |
BasketballPass | 500 | 410 | 50 | 8 |
VTM11.0-NNVC | VTM11.0-NNVC with CTN-C | ||||||||
---|---|---|---|---|---|---|---|---|---|
Class | Video Sequence | Y-PSNR | U-PSNR | V-PSNR | Decoding | Y-PSNR | U-PSNR | V-PSNR | Decoding |
/dB | /dB | /dB | Time/s | /dB | /dB | /dB | Time/s | ||
A1 | Tango2 | 38.86 | 47.51 | 44.89 | 65.64 | 38.88 | 47.63 | 44.83 | 4 181.96 |
FoodMarket4 | 41.21 | 46.00 | 46.16 | 70.30 | 41.23 | 46.02 | 46.19 | 4 234.27 | |
Campfire | 36.52 | 35.97 | 39.81 | 80.85 | 36.54 | 36.03 | 39.86 | 4 267.28 | |
A2 | CatRobot | 38.41 | 40.82 | 41.37 | 65.04 | 38.45 | 40.90 | 41.44 | 4 250.03 |
DaylightRoad2 | 36.47 | 44.15 | 41.85 | 69.64 | 36.51 | 44.29 | 41.91 | 4 278.40 | |
ParkRunning3 | 36.50 | 32.89 | 34.59 | 106.77 | 36.53 | 33.00 | 34.63 | 4 285.42 | |
B | MarketPlace | 36.86 | 41.96 | 42.80 | 36.46 | 36.89 | 42.16 | 42.93 | 1 270.89 |
RitualDance | 38.73 | 44.30 | 44.25 | 35.87 | 38.80 | 44.44 | 44.45 | 1 269.88 | |
Cactus | 35.60 | 38.87 | 41.22 | 27.34 | 35.61 | 38.92 | 41.30 | 1 059.97 | |
BasketballDrive | 36.31 | 42.06 | 42.23 | 46.94 | 36.33 | 42.16 | 42.39 | 1 078.13 | |
BQTerrace | 34.38 | 40.84 | 43.44 | 30.64 | 34.35 | 40.96 | 43.48 | 1 265.19 | |
C | BasketbalDrill | 35.79 | 39.87 | 40.10 | 6.83 | 35.85 | 40.05 | 40.32 | 204.68 |
BQMall | 35.82 | 41.07 | 42.03 | 10.80 | 35.91 | 41.34 | 42.26 | 247.90 | |
PartyScene | 32.59 | 38.04 | 38.89 | 10.98 | 32.71 | 38.34 | 38.98 | 208.78 | |
RaceHorses | 33.75 | 37.51 | 39.50 | 9.57 | 33.79 | 37.69 | 39.65 | 128.08 | |
D | BasketballPass | 34.18 | 39.82 | 38.13 | 3.20 | 34.33 | 40.12 | 38.42 | 58.09 |
BQSquare | 32.64 | 40.59 | 41.68 | 1.91 | 32.98 | 40.76 | 41.92 | 67.57 | |
BlowingBubbles | 32.58 | 37.51 | 38.28 | 2.88 | 32.71 | 37.81 | 38.38 | 58.01 | |
RaceHorses | 33.13 | 37.16 | 38.49 | 1.37 | 33.24 | 37.44 | 38.70 | 34.16 | |
Overall | 35.81 | 40.37 | 41.04 | 35.95 | 35.88 | 40.53 | 41.16 | 1 707.83 |
Table 2 PSNR under the random access mode
VTM11.0-NNVC | VTM11.0-NNVC with CTN-C | ||||||||
---|---|---|---|---|---|---|---|---|---|
Class | Video Sequence | Y-PSNR | U-PSNR | V-PSNR | Decoding | Y-PSNR | U-PSNR | V-PSNR | Decoding |
/dB | /dB | /dB | Time/s | /dB | /dB | /dB | Time/s | ||
A1 | Tango2 | 38.86 | 47.51 | 44.89 | 65.64 | 38.88 | 47.63 | 44.83 | 4 181.96 |
FoodMarket4 | 41.21 | 46.00 | 46.16 | 70.30 | 41.23 | 46.02 | 46.19 | 4 234.27 | |
Campfire | 36.52 | 35.97 | 39.81 | 80.85 | 36.54 | 36.03 | 39.86 | 4 267.28 | |
A2 | CatRobot | 38.41 | 40.82 | 41.37 | 65.04 | 38.45 | 40.90 | 41.44 | 4 250.03 |
DaylightRoad2 | 36.47 | 44.15 | 41.85 | 69.64 | 36.51 | 44.29 | 41.91 | 4 278.40 | |
ParkRunning3 | 36.50 | 32.89 | 34.59 | 106.77 | 36.53 | 33.00 | 34.63 | 4 285.42 | |
B | MarketPlace | 36.86 | 41.96 | 42.80 | 36.46 | 36.89 | 42.16 | 42.93 | 1 270.89 |
RitualDance | 38.73 | 44.30 | 44.25 | 35.87 | 38.80 | 44.44 | 44.45 | 1 269.88 | |
Cactus | 35.60 | 38.87 | 41.22 | 27.34 | 35.61 | 38.92 | 41.30 | 1 059.97 | |
BasketballDrive | 36.31 | 42.06 | 42.23 | 46.94 | 36.33 | 42.16 | 42.39 | 1 078.13 | |
BQTerrace | 34.38 | 40.84 | 43.44 | 30.64 | 34.35 | 40.96 | 43.48 | 1 265.19 | |
C | BasketbalDrill | 35.79 | 39.87 | 40.10 | 6.83 | 35.85 | 40.05 | 40.32 | 204.68 |
BQMall | 35.82 | 41.07 | 42.03 | 10.80 | 35.91 | 41.34 | 42.26 | 247.90 | |
PartyScene | 32.59 | 38.04 | 38.89 | 10.98 | 32.71 | 38.34 | 38.98 | 208.78 | |
RaceHorses | 33.75 | 37.51 | 39.50 | 9.57 | 33.79 | 37.69 | 39.65 | 128.08 | |
D | BasketballPass | 34.18 | 39.82 | 38.13 | 3.20 | 34.33 | 40.12 | 38.42 | 58.09 |
BQSquare | 32.64 | 40.59 | 41.68 | 1.91 | 32.98 | 40.76 | 41.92 | 67.57 | |
BlowingBubbles | 32.58 | 37.51 | 38.28 | 2.88 | 32.71 | 37.81 | 38.38 | 58.01 | |
RaceHorses | 33.13 | 37.16 | 38.49 | 1.37 | 33.24 | 37.44 | 38.70 | 34.16 | |
Overall | 35.81 | 40.37 | 41.04 | 35.95 | 35.88 | 40.53 | 41.16 | 1 707.83 |
Class | Y-PSNR | U-PSNR | V-PSNR | Y-MSIM | U-MSIM | V-MSIM | DecT |
---|---|---|---|---|---|---|---|
Class A1 | -0.80% | -2.87% | -0.12% | -1.02% | -5.32% | -1.28% | 5 415% |
Class A2 | -1.54% | -6.75% | -2.47% | -1.45% | -5.30% | -1.35% | 5 268% |
Class B | -0.27% | -6.22% | -4.84% | -1.21% | -5.91% | -4.31% | 3 137% |
Class C | -1.91% | -8.13% | -5.53% | -1.40% | -6.47% | -3.67% | 1 849% |
Class D | -4.09% | -8.58% | -6.39% | -1.99% | -6.53% | -3.91% | 2 220% |
Overall | -1.70% | -6.68% | -4.19% | -1.42% | -5.97% | -3.15% | 3 087% |
Table 3 Improvement of CTN-C compared with VTM11.0-NNVC under the random access mode
Class | Y-PSNR | U-PSNR | V-PSNR | Y-MSIM | U-MSIM | V-MSIM | DecT |
---|---|---|---|---|---|---|---|
Class A1 | -0.80% | -2.87% | -0.12% | -1.02% | -5.32% | -1.28% | 5 415% |
Class A2 | -1.54% | -6.75% | -2.47% | -1.45% | -5.30% | -1.35% | 5 268% |
Class B | -0.27% | -6.22% | -4.84% | -1.21% | -5.91% | -4.31% | 3 137% |
Class C | -1.91% | -8.13% | -5.53% | -1.40% | -6.47% | -3.67% | 1 849% |
Class D | -4.09% | -8.58% | -6.39% | -1.99% | -6.53% | -3.91% | 2 220% |
Overall | -1.70% | -6.68% | -4.19% | -1.42% | -5.97% | -3.15% | 3 087% |
Class | Video Sequence | Low QP (22–37) | High QP (27–42) | ||||
---|---|---|---|---|---|---|---|
Y | U | V | Y | U | V | ||
A1 | Tango2 | -0.78% | -6.16% | 2.14% | -1.04% | -7.10% | 2.35% |
FoodMarket4 | -0.62% | -0.21% | -0.73% | -0.87% | -0.56% | -0.82% | |
Campfire | -0.48% | -1.16% | -1.46% | -1.07% | -2.00% | -2.27% | |
A2 | CatRobot | -1.75% | -6.47% | -3.11% | -1.98% | -7.69% | -3.81% |
DaylightRoad2 | -2.41% | -7.77% | -2.61% | -2.13% | -9.33% | -1.95% | |
ParkRunning3 | -0.35% | -3.96% | -1.70% | -0.70% | -4.78% | -1.68% | |
B | MarketPlace | -1.05% | -9.68% | -6.17% | -1.23% | -10.11% | -7.17% |
RitualDance | -1.53% | -4.21% | -5.29% | -1.50% | -5.12% | -6.41% | |
Cactus | -0.19% | -3.63% | -3.08% | -0.59% | -5.55% | -3.28% | |
BasketballDrive | -0.54% | -4.98% | -5.63% | -0.90% | -4.91% | -5.62% | |
BQTerrace | 3.18% | -6.99% | -3.04% | 1.66% | -5.73% | -2.75% | |
C | BasketbalDrill | -1.49% | -5.63% | -6.27% | -1.58% | -6.37% | -6.36% |
BQMall | -2.26% | -8.41% | -6.42% | -2.37% | -10.39% | -7.65% | |
PartyScene | -3.22% | -9.02% | -2.67% | -2.88% | -11.47% | -3.38% | |
RaceHorses | -0.57% | -6.47% | -5.76% | -1.05% | -8.04% | 6.85% | |
D | BasketballPass | -2.97% | -8.83% | -7.96% | -3.24% | -10.70% | -8.35% |
BQSquare | -8.20% | -6.02% | -7.88% | -8.13% | -6.53% | -8.39% | |
BlowingBubbles | -3.14% | -8.62% | -2.49% | -3.11% | -10.78% | -3.70% | |
RaceHorses | -2.39% | -8.40% | -6.13% | -2.42v | -10.26% | -7.32% | |
Overall | -1.62% | -6.14% | -4.01% | -1.85% | -7.32% | -4.50% |
Table 4 BD rate (PSNR) of CTN-C on VTM11.0-NNVC under the random access mode
Class | Video Sequence | Low QP (22–37) | High QP (27–42) | ||||
---|---|---|---|---|---|---|---|
Y | U | V | Y | U | V | ||
A1 | Tango2 | -0.78% | -6.16% | 2.14% | -1.04% | -7.10% | 2.35% |
FoodMarket4 | -0.62% | -0.21% | -0.73% | -0.87% | -0.56% | -0.82% | |
Campfire | -0.48% | -1.16% | -1.46% | -1.07% | -2.00% | -2.27% | |
A2 | CatRobot | -1.75% | -6.47% | -3.11% | -1.98% | -7.69% | -3.81% |
DaylightRoad2 | -2.41% | -7.77% | -2.61% | -2.13% | -9.33% | -1.95% | |
ParkRunning3 | -0.35% | -3.96% | -1.70% | -0.70% | -4.78% | -1.68% | |
B | MarketPlace | -1.05% | -9.68% | -6.17% | -1.23% | -10.11% | -7.17% |
RitualDance | -1.53% | -4.21% | -5.29% | -1.50% | -5.12% | -6.41% | |
Cactus | -0.19% | -3.63% | -3.08% | -0.59% | -5.55% | -3.28% | |
BasketballDrive | -0.54% | -4.98% | -5.63% | -0.90% | -4.91% | -5.62% | |
BQTerrace | 3.18% | -6.99% | -3.04% | 1.66% | -5.73% | -2.75% | |
C | BasketbalDrill | -1.49% | -5.63% | -6.27% | -1.58% | -6.37% | -6.36% |
BQMall | -2.26% | -8.41% | -6.42% | -2.37% | -10.39% | -7.65% | |
PartyScene | -3.22% | -9.02% | -2.67% | -2.88% | -11.47% | -3.38% | |
RaceHorses | -0.57% | -6.47% | -5.76% | -1.05% | -8.04% | 6.85% | |
D | BasketballPass | -2.97% | -8.83% | -7.96% | -3.24% | -10.70% | -8.35% |
BQSquare | -8.20% | -6.02% | -7.88% | -8.13% | -6.53% | -8.39% | |
BlowingBubbles | -3.14% | -8.62% | -2.49% | -3.11% | -10.78% | -3.70% | |
RaceHorses | -2.39% | -8.40% | -6.13% | -2.42v | -10.26% | -7.32% | |
Overall | -1.62% | -6.14% | -4.01% | -1.85% | -7.32% | -4.50% |
Class | VTM with CTN-C | VTM with CTN-E | ||||
---|---|---|---|---|---|---|
Y-PSNR | U-PSNR | V-PSNR | Y- PSNR | U- PSNR | V- PSNR | |
Class A1 | -0.80% | -2.87% | -0.12% | -0.20% | -1.91% | -0.41% |
Class A2 | -1.54% | -6.75% | -2.47% | -0.74% | -3.04% | -0.40% |
Class B | -0.27% | -6.22% | -4.84% | -0.11% | -2.82% | -0.36% |
Class C | -1.91% | -8.13% | -5.53% | -0.59% | -3.38% | -0.96% |
Class D | -4.09% | -8.58% | -6.39% | -1.88% | -3.98% | -0.99% |
Overall | -1.70% | -6.68% | -4.19% | -0.64% | -3.07% | -0.63% |
Table 5 Gain effects of CTN-C compared with CTN-E
Class | VTM with CTN-C | VTM with CTN-E | ||||
---|---|---|---|---|---|---|
Y-PSNR | U-PSNR | V-PSNR | Y- PSNR | U- PSNR | V- PSNR | |
Class A1 | -0.80% | -2.87% | -0.12% | -0.20% | -1.91% | -0.41% |
Class A2 | -1.54% | -6.75% | -2.47% | -0.74% | -3.04% | -0.40% |
Class B | -0.27% | -6.22% | -4.84% | -0.11% | -2.82% | -0.36% |
Class C | -1.91% | -8.13% | -5.53% | -0.59% | -3.38% | -0.96% |
Class D | -4.09% | -8.58% | -6.39% | -1.88% | -3.98% | -0.99% |
Overall | -1.70% | -6.68% | -4.19% | -0.64% | -3.07% | -0.63% |
Class | VTM with CTN-C | VTM with CTN-G | VTM with CTN-L | ||||||
---|---|---|---|---|---|---|---|---|---|
Y-PSNR | U-PSNR | V-PSNR | Y-PSNR | U-PSNR | V-PSNR | Y-PSNR | U-PSNR | V-PSNR | |
Class A1 | -0.80% | -2.87% | -0.12% | -0.42% | -0.37% | -0.33% | -1.74% | -0.15% | |
Class A2 | -1.54% | -6.75% | -2.47% | -1.13% | -3.77% | -1.75% | -0.69% | -3.58% | -0.95% |
Class B | -0.27% | -6.22% | -4.84% | -0.33% | -2.79% | -2.06% | -0.18% | -2.23% | -1.36% |
Class C | -1.91% | -8.13% | -5.53% | -0.92% | -3.19% | -2.24% | -0.74% | -2.93% | -1.58% |
Class D | -4.09% | -8.58% | -6.39% | -1.64% | -3.53% | -3.35% | -1.13% | -2.46% | -1.87% |
Overall | -1.70% | -6.68% | -4.19% | -0.88% | -2.83% | -2.25% | -0.49% | -1.17% | -1.07% |
Table 6 Comparison of CTN-G and CTN-L with CTN-C on VTM
Class | VTM with CTN-C | VTM with CTN-G | VTM with CTN-L | ||||||
---|---|---|---|---|---|---|---|---|---|
Y-PSNR | U-PSNR | V-PSNR | Y-PSNR | U-PSNR | V-PSNR | Y-PSNR | U-PSNR | V-PSNR | |
Class A1 | -0.80% | -2.87% | -0.12% | -0.42% | -0.37% | -0.33% | -1.74% | -0.15% | |
Class A2 | -1.54% | -6.75% | -2.47% | -1.13% | -3.77% | -1.75% | -0.69% | -3.58% | -0.95% |
Class B | -0.27% | -6.22% | -4.84% | -0.33% | -2.79% | -2.06% | -0.18% | -2.23% | -1.36% |
Class C | -1.91% | -8.13% | -5.53% | -0.92% | -3.19% | -2.24% | -0.74% | -2.93% | -1.58% |
Class D | -4.09% | -8.58% | -6.39% | -1.64% | -3.53% | -3.35% | -1.13% | -2.46% | -1.87% |
Overall | -1.70% | -6.68% | -4.19% | -0.88% | -2.83% | -2.25% | -0.49% | -1.17% | -1.07% |
1 | QuestMobile. QuestMobile's 2023 annual report on china internet core trends (condensed version) [R/OL]. (2023-12-19)[2024-03-20]. |
2 | WIEGAND T, SULLIVAN G J, BJONTEGAARD G, et al. Overview of the H.264/AVC video coding standard [J]. IEEE transactions on circuits and systems for video technology, 2003, 13(7): 560–576. DOI: 10.1109/TCSVT.2003.815165 |
3 | SULLIVAN G J, OHM J R, HAN W J, et al. Overview of the high efficiency video coding (HEVC) standard [J]. IEEE transactions on circuits and systems for video technology, 2012, 22(12): 1649–1668. DOI: 10.1109/TCSVT.2012.2221191 |
4 | DONG C, DENG Y B, LOY C C, et al. Compression artifacts reduction by a deep convolutional network [C]//Proc. IEEE International Conference on Computer Vision (ICCV). IEEE, 2015: 576–584. DOI: 10.1109/ICCV.2015.73 |
5 | WANG Z Y, LIU D, CHANG S Y, et al . D 3: deep dual-domain based fast restoration of JPEG-compressed images [C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 2764–2772. DOI: 10.1109/CVPR.2016.302 |
6 | ORORBIA A G, MALI A, WU J, et al. Learned neural iterative decoding for lossy image compression systems [C]//Proc. Data Compression Conference (DCC). IEEE, 2019: 3–12. DOI: 10.1109/DCC.2019.00008 |
7 | DAI Y Y, LIU D, WU F. A convolutional neural network approach for post-processing in HEVC intra coding [M]//Lecture notes in computer science. Cham: Springer International Publishing, 2016: 28–39. DOI: 10.1007/978-3-319-51811-4_3 |
8 | YANG R, XU M, WANG Z L. Decoder-side HEVC quality enhancement with scalable convolutional neural network [C]//Proc. IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017: 817–822. DOI: 10.1109/ICME.2017.8019299 |
9 | QI Z Y, JUNG C, LIU Y, et al. CNN-based post-processing filter for video compression with multi-scale feature representation [C]//Proc. IEEE International Conference on Visual Communications and Image Processing (VCIP). IEEE, 2022: 1–5. DOI: 10.1109/VCIP56404.2022.10008797 |
10 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]//Proc. 31st International Conference on Neural Information Processing Systems. NIPS, 2017: 6000–6010. DOI: 10.48550/arXiv.1706.03762 |
11 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale [EB/OL]. (2020-10-22)[2024-03-20]. |
12 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]//Proc. IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021: 9992–10002. DOI: 10.1109/ICCV48922.2021.00986 |
13 | CHEN H T, WANG Y H, GUO T Y, et al. Pre-trained image processing transformer [C]//Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021: 12294–12305. DOI: 10.1109/CVPR46437.2021.01212 |
14 | LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer [C]//2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, 2021. DOI: 10.1109/ICCVW54120.2021.00210 |
15 | ZHANG K, LI Y W, LIANG J Y, et al. Practical blind image denoising via swin-conv-UNet and data synthesis [J]. Machine Intelligence Research, 2023, 20: 822–836. DOI: 10.1007/s11633-023-1466-0 |
16 | LI X, WANG W H, HU X L, et al. Selective kernel networks [C]//Proce. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 510–519. DOI: 10.1109/CVPR.2019.00060 |
17 | MA D, ZHANG F, BULL D R. BVI-DVC: a training database for deep video compression [J]. IEEE transactions on multimedia, 2022, 24: 3847–3858. DOI: 10.1109/TMM.2021.3108943 |
18 | LIU S, SEGALL A, ALSHINA E, et al. Common test conditions and evaluation procedures for neural network-based video coding technology [Z]. JVET-W2016, 2021 |
19 | JVET. VTM-11.0-NNVC, VVC test model [EB/OL]. [2024-03-20]. |
20 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE transactions on image processing, 2004, 13(4): 600–612. DOI: 10.1109/tip.2003.819861 |
21 | CHEN L H, BAMPIS C G, LI Z, et al. Perceptual video quality prediction emphasizing chroma distortions [J]. IEEE transactions on image processing, 2021, 30: 1408–1422. DOI: 10.1109/TIP.2020.3043127 |
22 | HEINDEL A, PRESTELE B, GEHLERT A, et al. Enhancement layer coding for chroma sub-sampled screen content video [J]. IEEE transactions on circuits and systems for video technology, 2022, 32(2): 788–801. DOI: 10.1109/TCSVT.2021.3061944 |
[1] | ZHANG Qiang, MEI Junjun, GUAN Tao, SUN Zhewen, ZHANG Zixiang, YU Li. Recent Advances in Video Coding for Machines Standard and Technologies [J]. ZTE Communications, 2024, 22(1): 62-76. |
[2] | LI Wei, JI Jingkang, LIU Yuanlong, SUN Jiawei, LIN Subin. Simulation and Modeling of Common Mode EMI Noise in Planar Transformers [J]. ZTE Communications, 2023, 21(3): 105-116. |
[3] | ZHONG Min, ZHOU Yimin, LUO Minke, ZUO Wen. Variable Bit Rate Fuzzy Control for Low Delay Video Coding [J]. ZTE Communications, 2017, 15(2): 55-65. |
[4] | LIN Tao, ZHAO Liping, ZHOU Kailun. Screen Content Coding in HEVC and Beyond [J]. ZTE Communications, 2016, 14(S0): 51-58. |
[5] | ZHANG Tao, ZHANG Caixia, ZHAO Xin. Review of AVS Audio Coding Standard [J]. ZTE Communications, 2016, 14(2): 56-62. |
[6] | Shanshe Wang, Falei Luo, Siwei Ma. Overview of the Second Generation AVS Video Coding Standard (AVS2) [J]. ZTE Communications, 2016, 14(1): 3-11. |
[7] | Bin Li, Jizheng Xu. An Introduction to High Efficiency Video Coding Range Extensions [J]. ZTE Communications, 2016, 14(1): 12-18. |
[8] | Tao Lin. Screen Content Coding with Primary and Secondary Reference Buffers for String Matching and Copying [J]. ZTE Communications, 2015, 13(4): 53-60. |
[9] | Siwei Ma, Shiqi Wang, and Wen Gao. AVS 3D Video Coding Technology and System [J]. ZTE Communications, 2012, 10(2): 13-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||