ZTE Communications ›› 2023, Vol. 21 ›› Issue (4): 29-37.DOI: 10.12142/ZTECOM.202304004
• Special Topic • Previous Articles Next Articles
YIN Qian1, ZHANG Xinfeng2, HUANG Hongyue1, WANG Shanshe1, MA Siwei1()
Received:
2023-10-07
Online:
2023-12-07
Published:
2023-12-07
About author:
YIN Qian received her MS degree in signal and information processing from University of Electronic Science and Technology of China in 2021. She is currently pursuing a PhD degree in computer science at Peking University, China. She is actively participating in the research work of the Audio Video Coding Standard (AVS) Workgroup of China and Moving Picture Experts Group (MPEG). Her research interests include video and point cloud compression.Supported by:
YIN Qian, ZHANG Xinfeng, HUANG Hongyue, WANG Shanshe, MA Siwei. Lossy Point Cloud Attribute Compression with Subnode-Based Prediction[J]. ZTE Communications, 2023, 21(4): 29-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202304004
G-PCC Platform | Conditions | Datasets | |||
---|---|---|---|---|---|
C1 | C2 | Cat1 | Cat2 | Cat3 | |
TMC13 | √ | √ | √ | √ | |
GeS-TM | √ | √ | √ |
Table 1 Common test conditions in G-PCC
G-PCC Platform | Conditions | Datasets | |||
---|---|---|---|---|---|
C1 | C2 | Cat1 | Cat2 | Cat3 | |
TMC13 | √ | √ | √ | √ | |
GeS-TM | √ | √ | √ |
Dataset Category | C1 End-to-End BD-Attribute Rate/% | C2 End-to-End BD-Attribute Rate/% | ||||||
---|---|---|---|---|---|---|---|---|
Luma | Chroma Cb | Chroma Cr | Reflectance | Luma | Chroma Cb | Chroma Cr | Reflectance | |
Solid average | -0.4 | -0.3 | -0.4 | / | -0.2 | -0.3 | -0.2 | / |
Dense average | -0.2 | -0.2 | -0.2 | / | -0.2 | -0.5 | -0.1 | / |
Sparse average | -0.2 | -0.2 | -0.1 | / | -0.2 | -0.1 | -0.3 | / |
Scant average | -0.2 | -0.2 | -0.3 | / | -0.2 | -0.3 | -0.2 | / |
Am-fused average | -0.3 | -1.2 | -1.1 | -1.1 | -0.1 | -0.6 | -0.7 | -0.2 |
Am-frame spinning average | / | / | / | -0.3 | / | / | / | -0.2 |
Am-frame non-spinning average | / | / | / | -0.6 | / | / | / | -0.2 |
Overall average | -0.2 | -0.3 | -0.3 | -0.5 | -0.2 | -0.3 | -0.2 | -0.2 |
Average encoding/decoding time/% | 102/103 | 100/107 |
Table 2 Performance of the proposed method against TMC13-v22.0 under C1 and C2 configurations
Dataset Category | C1 End-to-End BD-Attribute Rate/% | C2 End-to-End BD-Attribute Rate/% | ||||||
---|---|---|---|---|---|---|---|---|
Luma | Chroma Cb | Chroma Cr | Reflectance | Luma | Chroma Cb | Chroma Cr | Reflectance | |
Solid average | -0.4 | -0.3 | -0.4 | / | -0.2 | -0.3 | -0.2 | / |
Dense average | -0.2 | -0.2 | -0.2 | / | -0.2 | -0.5 | -0.1 | / |
Sparse average | -0.2 | -0.2 | -0.1 | / | -0.2 | -0.1 | -0.3 | / |
Scant average | -0.2 | -0.2 | -0.3 | / | -0.2 | -0.3 | -0.2 | / |
Am-fused average | -0.3 | -1.2 | -1.1 | -1.1 | -0.1 | -0.6 | -0.7 | -0.2 |
Am-frame spinning average | / | / | / | -0.3 | / | / | / | -0.2 |
Am-frame non-spinning average | / | / | / | -0.6 | / | / | / | -0.2 |
Overall average | -0.2 | -0.3 | -0.3 | -0.5 | -0.2 | -0.3 | -0.2 | -0.2 |
Average encoding/decoding time/% | 102/103 | 100/107 |
Dataset Category | C1 BD-Rate/% | C2 BD-Rate/% | ||||
---|---|---|---|---|---|---|
L | Cb | Cr | L | Cb | Cr | |
Cat2-A average | -0.4 | -0.5 | -0.5 | -0.3 | -0.3 | -0.4 |
Cat2-B average | -0.3 | -0.3 | -0.3 | -0.2 | -0.2 | -0.2 |
Cat2-C average | -0.5 | -0.4 | -0.5 | -0.4 | -0.4 | -0.3 |
Overall average | -0.4 | -0.4 | -0.5 | -0.3 | -0.3 | -0.4 |
Avgerage encoding/decoding time (%) | 106/109 | 101/110 |
Table 3 Performance of the proposed method against GeSTM-v2.0 under C1 and C2 configurations
Dataset Category | C1 BD-Rate/% | C2 BD-Rate/% | ||||
---|---|---|---|---|---|---|
L | Cb | Cr | L | Cb | Cr | |
Cat2-A average | -0.4 | -0.5 | -0.5 | -0.3 | -0.3 | -0.4 |
Cat2-B average | -0.3 | -0.3 | -0.3 | -0.2 | -0.2 | -0.2 |
Cat2-C average | -0.5 | -0.4 | -0.5 | -0.4 | -0.4 | -0.3 |
Overall average | -0.4 | -0.4 | -0.5 | -0.3 | -0.3 | -0.4 |
Avgerage encoding/decoding time (%) | 106/109 | 101/110 |
1 | TULVAN C, MEKURIA R, LI Z. Use cases for point cloud compression (PCC), output document N16331 [R]. Geneva, Switzerland: ISO/IEC JTC 1/SC29/WG 11 MPEG, 2016 |
2 | MEKURIA R, BLOM K, Design CESAR P., implementation, and evaluation of a point cloud codec for tele-immersive video [J]. IEEE transactions on circuits and systems for video technology, 2017, 27(4): 828–842. DOI: 10.1109/TCSVT.2016.2543039 |
3 | MPEG 3D Graphics Coding Group. Call for proposals for point cloud coding v2, output document N16763 [R]. 2017 |
4 | MPEG 3D Graphics and Haptics Coding Group. V-PCC test model v22, output document N00572 [R]. Antalya, Turkish: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2023 |
5 | MPEG 3D Graphics and Haptics Coding Group. G-PCC test model v22, output document N00571 [R]. Antalya, Turkish: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2023 |
6 | SCHNABEL R, KLEIN R. Octree-based point-cloud compression [C]//Symposium on Point-Based Graphics. Eurographics Association, 2006: 111–120. DOI: 10.2312/SPBG/SPBG06/111-120 |
7 | PENG J L, KUO C C J. Progressive geometry encoder using octree-based space partitioning [C]//2004 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2004: 1–4. DOI: 10.1109/ICME.2004.1394110 |
8 | NAKAGAMI O. Report on triangle soup decoding, input document m52279 [R]. Brussels, Belgium: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2020 |
9 | FLYNN D, TOURAPIS A, MAMMOU K. Predictive geometry coding, input document m51012 [R]. Geneva, Switzerland: ISO/IEC JTC 1/SC 29/WG11 MPEG, 2019 |
10 | MAMMOU K. PCC test model category 3 v0, output document N17249 [R]. Macau, China: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2017 |
11 | CHOU P A, DE QUEIROZ R. L. Transform coder for point cloud attributes, input document m38674 [R]. Geneva, Switzerland: ISO/IEC JTC 1/SC29/WG 11 MPEG, 2016 |
12 | DE QUEIROZ R L, CHOU P A. Compression of 3D point clouds using a region-adaptive hierarchical transform [J]. IEEE transactions on image processing, 2016, 25(8): 3947–3956. DOI: 10.1109/TIP.2016.2575005 |
13 | FLYNN D, LASSERRE S. G-PCC CE13.18 report on upsampled transform domain prediction in RAHT, input document m49380 [R]. Gothenburg, Sweden: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2019 |
14 | WANG W, XU Y, ZHANG Ket al. Sub-node-based prediction in transform domain for RAHT, input document m60203 [R]. Online: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2022 |
15 | MAMMOU K. Point cloud compression core experiment 13.6 on attributes prediction strategies, output document N18007 [R]. Macau, China: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2018 |
16 | MAMMOU K, TOURAPIS A, KIM J, et al. Proposal for improved lossy compression in TMC1, input document m42640 [R]. San Diego, United states: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2018 |
17 | WEI H L, SHAO Y T, WANG J, et al. Enhanced intra prediction scheme in point cloud attribute compression [C]//2019 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2019: 1–4. DOI: 10.1109/VCIP47243.2019.8966001 |
18 | YEA S. VOSOUGHI A, LIU S. Bilateral filtering for predictive transform in G-PCC, input document m46365 [R]. Marrakech, Morocco: ISO/IEC JTC1/SC 29/WG 11 MPEG, 2019 |
19 | YIN Q, REN Q S, ZHAO L L, et al. Lossless point cloud attribute compression with normal-based intra prediction [C]//2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2021: 1–5. DOI: 10.1109/BMSB53066.2021.9547021 |
20 | ZHANG X M, WAN W G, AN X D. Clustering and DCT based color point cloud compression [J]. Journal of signal processing systems, 2017, 86(1): 41–49. DOI: 10.1007/s11265-015-1095-0 |
21 | COHEN R A, TIAN D, VETRO A. Point cloud attribute compression using 3-D intra prediction and shape-adaptive transforms [C]//2016 Data Compression Conference (DCC). IEEE, 2016: 141–150. DOI: 10.1109/DCC.2016.67 |
22 | WANG L J, WANG L Y, LUO Y T, et al. Point-Cloud compression using data independent method—a 3D discrete cosine transform approach [C]//2017 IEEE International Conference on Information and Automation (ICIA). IEEE, 2017: 1–6. DOI: 10.1109/icinfa.2017.8078873 |
23 | ZHANG C, FLORÊNCIO D, LOOP C. Point cloud attribute compression with graph transform [C]//2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014: 2066–2070. DOI: 10.1109/ICIP.2014.7025414 |
24 | SHAO Y T, ZHANG Z B, LI Z, et al. Attribute compression of 3D point clouds using Laplacian sparsity optimized graph transform [C]//2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2017: 1–4. DOI: 10.1109/VCIP.2017.8305131 |
25 | XU Y Q, HU W, WANG S S, et al. Cluster-based point cloud coding with normal weighted graph Fourier transform [C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 1753–1757. DOI: 10.1109/ICASSP.2018.8462684 |
26 | XU Y Q, HU W, WANG S S, et al. Predictive generalized graph Fourier transform for attribute compression of dynamic point clouds [J]. IEEE transactions on circuits and systems for video technology, 2021, 31(5): 1968–1982. DOI: 10.1109/TCSVT.2020.3015901 |
27 | HOODA R, PAN W D. Early termination of dyadic region-adaptive hierarchical transform for efficient attribute compression of 3D point clouds [J]. IEEE signal processing letters, 2022, 29: 214–218. DOI: 10.1109/LSP.2021.3133204 |
28 | MPEG 3D Graphics and Haptics Coding Group. TMC13 software repository [EB/OL]. (2023-06-02)[2023-11-20]. |
29 | MPEG 3D Graphics and Haptics Coding Group. GeS-TM software repository [EB/OL]. (2023-06-05)[2023-11-20]. |
30 | MPEG 3D Graphics and Haptics Coding Group. Common test conditions for G-PCC, output document N00578 [R]. Antalya, Turkish: ISO/IEC JTC 1/SC29/WG 11 MPEG, 2023 |
31 | MPEG 3D Graphics and Haptics Coding Group. MPEG content repository [EB/OL]. (2023-03-17)[2023-11-20]. |
[1] | XU Yiling, ZHANG Ke, HE Lanyi, JIANG Zhiqian, ZHU Wenjie. Introduction to Point Cloud Compression [J]. ZTE Communications, 2018, 16(3): 3-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||