ZTE Communications ›› 2023, Vol. 21 ›› Issue (2): 88-94.DOI: 10.12142/ZTECOM.202302012
• Review • Previous Articles
CHEN Jixin1, ZHOU Peigen1(), YU Jiayang1, LI Zekun1, LI Huanbo1, PENG Lin2
Received:
2023-01-30
Online:
2023-06-13
Published:
2023-06-13
About author:
CHEN Jixin received his BS degree in radio engineering from Southeast University, China in 1998, and MS and PhD degrees from Southeast University in 2002 and 2006, respectively, all in electromagnetic field and microwave techniques. Since 1998, he has been with the Sate Key Laboratory of Millimeter Waves, Southeast University, and is currently a professor of School of Information Science and Engineering. His current research interests include microwave and millimeter-wave circuit design and MMIC design. He has authored and co-authored more than 100 papers and presented invited papers at ICMMT2016, IMWS2012, and GSMM2011. He is the winner of 2016 Keysight Early Career Professor Award. He has served as the TPC Co-chair of HSIC2012, UCMMT2012, LOC Co-chair of APMC2015, Session Co-chair of iWAT2011, ISSSE2010, and APMC2007, and a reviewer for IEEE MTT and IEEE MWCL.|ZHOU Peigen (Supported by:
CHEN Jixin, ZHOU Peigen, YU Jiayang, LI Zekun, LI Huanbo, PENG Lin. Research Towards Terahertz Power Amplifiers in Silicon-Based Process[J]. ZTE Communications, 2023, 21(2): 88-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202302012
1 |
KISSINGER D, KAHMEN G, WEIGEL R. Millimeter-wave and terahertz transceivers in SiGe BiCMOS technologies [J]. IEEE transactions on microwave theory and techniques, 2021, 69(10): 4541–4560. DOI: 10.1109/TMTT.2021.3095235
DOI |
2 |
RÜCKER H, HEINEMANN B, FOX A. Half-terahertz SiGe BiCMOS technology [C]//The 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. IEEE, 2012: 133–136. DOI: 10.1109/SiRF.2012.6160164
DOI |
3 | WANG H, WANG F, NGUYEN H T, et al. Power Amplifiers Performance Survey 2000-Present [EB/OL]. [2023-04-16]. |
4 |
LI X C, CHEN W H, ZHOU P G, et al. A 250–310 GHz power amplifier with 15 dB peak gain in 130 nm SiGe BiCMOS process for terahertz wireless system [J]. IEEE transactions on terahertz science and technology, 2022, 12(1): 1–12. DOI: 10.1109/TTHZ.2021.3099057
DOI |
5 |
LI H B, CHEN J X, HOU D B, et al. A 250 GHz differential SiGe amplifier with 21.5 dB gain for sub-THz transmitters [J]. IEEE transactions on terahertz science and technology, 2020, 10(6): 624–633. DOI: 10.1109/TTHZ.2020.3019361
DOI |
6 |
ZHOU P G, CHEN J X, YAN P P, et al. A 150 GHz transmitter with 12 dBm peak output power using 130 nm SiGe: C BiCMOS process [J]. IEEE transactions on microwave theory and techniques, 2020, 68(7): 3056–3067. DOI: 10.1109/TMTT.2020.2989112
DOI |
7 |
LI Z K, CHEN J X, LI H B, et al. A 220 GHz power amplifier with 22.5 dB gain and 9 dBm Psat in 130 nm SiGe [J]. IEEE microwave and wireless components letters, 2021, 31(10): 1166–1169. DOI: 10.1109/LMWC.2021.3105611
DOI |
8 |
YU J Y, CHEN J X, ZHOU P G, et al. A 211-to-263 GHz dual-LC-tank-based broadband power amplifier with 14.7 dBm PSAT and 16.4 dB peak gain in 130 nm SiGe BiCMOS [J]. IEEE journal of solid-state circuits, 2023, 58(2): 332–344. DOI: 10.1109/JSSC.2022.3192043
DOI |
9 |
BÜCHER T, GRZYB J, HILLGER P, et al. A broadband 300 GHz power amplifier in a 130 nm SiGe BiCMOS technology for communication applications [J]. IEEE journal of solid-state circuits, 2022, 57(7): 2024–2034. DOI: 10.1109/JSSC.2022.3162079
DOI |
10 |
LI X C, CHEN W H, LI S Y, et al. A high-efficiency 142–182 GHz SiGe BiCMOS power amplifier with broadband slotline-based power combining technique [J]. IEEE journal of solid-state circuits, 2022, 57(2): 371–384. DOI: 10.1109/JSSC.2021.3107428
DOI |
11 |
ATESAL Y A, CETINONERI B, CHANG M, et al. Millimeter-wave wafer-scale silicon BiCMOS power amplifiers using free-space power combining [J]. IEEE transactions on microwave theory and techniques, 2011, 59(4): 954–965. DOI: 10.1109/TMTT.2011.2108313
DOI |
12 |
YORK R A. Some considerations for optimal efficiency and low noise in large power combiners [J]. IEEE transactions on microwave theory and techniques, 2001, 49(8): 1477–1482. DOI: 10.1109/22.939929
DOI |
13 |
PARK D W, UTOMO D R, LAM B H, et al. A 230–260 GHz wideband and high-gain amplifier in 65 nm CMOS based on dual-peak Gmax-core [J]. IEEE journal of solid-state circuits, 2019, 54(6): 1613–1623. DOI: 10.1109/JSSC.2019.2899515
DOI |
14 |
SARMAH N, AUFINGER K, LACHNER R, et al. A 200–225 GHz SiGe power amplifier with peak Psat of 9.6 dBm using wideband power combination [C]//The 42nd European Solid-State Circuits Conference. IEEE, 2016: 193–196. DOI: 10.1109/ESSCIRC.2016.7598275
DOI |
15 |
EISSA M H, MALIGNAGGI A, KISSINGER D. A 13.5 dBm 200–255 GHz 4-way power amplifier and frequency source in 130 nm BiCMOS [J]. IEEE solid-state circuits letters, 2019, 2(11): 268–271. DOI: 10.1109/LSSC.2019.2951689
DOI |
16 |
LI X C, CHEN W H, ZHOU P G, et al. A 250–310 GHz power amplifier with 15 dB peak gain in 130 nm SiGe BiCMOS process for terahertz wireless system [J]. IEEE transactions on terahertz science and technology, 2022, 12(1): 1–12. DOI: 10.1109/TTHZ.2021.3099057
DOI |
17 |
BUCHER T, GRZYB J, HILLGER P, et al. A 239–298 GHz power amplifier in an advanced 130nm SiGe BiCMOS technology for communications applications [C]//The 47th European Solid State Circuits Conference (ESSCIRC). IEEE, 2021. DOI:10.1109/ESSCIRC53450.2021.9567853
DOI |
18 |
YOON D, SEO M G, SONG K, et al. 260 GHz differential amplifier in SiGe heterojunction bipolar transistor technology [J]. Electronics letters, 2017, 53(3): 194–196. DOI: 10.1049/el.2016.3882
DOI |
19 |
KUCHARSKI M, NG H J, KISSINGER D. An 18 dBm 155–180 GHz SiGe power amplifier using a 4-way T-junction combining network [C]//The 45th European Solid State Circuits Conference (ESSCIRC). IEEE, 2019: 333–336. DOI: 10.1109/ESSCIRC.2019.8902847
DOI |
20 |
STÄRKE P, CARTA C, ELLINGER F. High-linearity 19 dB power amplifier for 140–220 GHz, saturated at 15 dBm, in 130 nm SiGe [J]. IEEE microwave and wireless components letters, 2020, 30(4): 403–406. DOI: 10.1109/LMWC.2020.2978397
DOI |
21 |
PHILIPPE B, REYNAERT P. 24.7 A 15 dBm 12.8% PAE compact D-band power amplifier with two-way power combining in 16 nm FinFET CMOS [C]//IEEE International Solid State Circuits Conference (ISSCC). IEEE, 2020: 374–376. DOI: 10.1109/ISSCC19947.2020.9062920
DOI |
22 |
BAMERI H, MOMENI O. An embedded 200 GHz power amplifier with 9.4 dBm saturated power and 19.5 dB gain in 65 nm CMOS [C]//Proceedings of 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2020: 191–194. DOI: 10.1109/RFIC49505.2020.9218441
DOI |
[1] | ZHANG Bo, WANG Yihui, FENG Yinian, YANG Yonghui, PENG Lin. A 220 GHz Frequency-Division Multiplexing Wireless Link with High Data Rate [J]. ZTE Communications, 2023, 21(3): 63-69. |
[2] | WEI Xinghui, CHEN Xiaofan, CHEN Wenhua, ZHOU Junmin. A Novel De-Embedding Technique of Packaged GaN Transistors [J]. ZTE Communications, 2021, 19(2): 77-81. |
[3] | LIU Xin, CHEN Wenhua, WANG Dehan, NING Dongfang. Robust Digital Predistortion for LTE/5G Power Amplifiers Utilizing Negative Feedback Iteration [J]. ZTE Communications, 2020, 18(3): 49-56. |
[4] | GAO Xiang, MUHAMMAD Saqlain, CAO Xiaoxiao, WANG Shiwei, LIU Kexin, ZHANG Hangkai, YU Xianbin. Towards Converged Millimeter-Wave/TerahertzWireless Communication and Radar Sensing [J]. ZTE Communications, 2020, 18(1): 73-82. |
[5] | Phil Pietraski, David Britz, Arnab Roy, Ravi Pragada, and Gregg Charlton. Millimeter Wave and Terahertz Communications: Feasibility and Challenges [J]. ZTE Communications, 2012, 10(4): 3-12. |
[6] | R. Neil Braithwaite. Adaptation of a Digitally Predistorted RF Amplifier Using Selective Sampling [J]. ZTE Communications, 2011, 9(3): 3-12. |
[7] | W. Hamdane, A. B. Kouki, and F. Gagnon. A New Two-Branch Amplification Architecture and its Application with Various Modulated Signals [J]. ZTE Communications, 2011, 9(3): 13-21. |
[8] | Suranjana Julius and Anh Dinh. FPGA Implementation of a Power Amplifier Linearizer for an ETSI-SDR OFDM Transmitter [J]. ZTE Communications, 2011, 9(3): 22-27. |
[9] | Ruili Wu, Jerry Lopez, Yan Li and Donald Y.C. Lie. Design Technologies for Silicon-Based High-Efficiency RF Power Amplifiers: A Brief Overview [J]. ZTE Communications, 2011, 9(3): 28-35. |
[10] | Pengcheng Jia. Broadband Power Amplifiers for Unified Base Stations [J]. ZTE Communications, 2011, 9(2): 8-11. |
[11] | Zhiping Chen and Licun Wang. Green Base Station Solutions and Technology [J]. ZTE Communications, 2011, 9(1): 58-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||