ZTE Communications ›› 2022, Vol. 20 ›› Issue (1): 76-82.DOI: 10.12142/ZTECOM.202201010
• Research Paper • Previous Articles
YANG Bo1, GUO Caili1,2(), LI Zheng1
Received:
2021-11-15
Online:
2022-03-25
Published:
2022-04-06
About author:
YANG Bo received the B.S. degree in communication engineering from Beijing University of Posts and Telecommunications (BUPT), China in 2019. He is currently pursuing the M.S. degree in information and communication engineering at BUPT. His current research interests include computer vision and image retrieval.|GUO Caili (YANG Bo, GUO Caili, LI Zheng. Metric Learning for Semantic‑Based Clothes Retrieval[J]. ZTE Communications, 2022, 20(1): 76-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202201010
Methods | R@1 | R@20 | R@50 |
---|---|---|---|
FashionNet[ | 7.0 | 18.8 | 22.8 |
VAM+Nonshared[ | 11.3 | 38.8 | 51.5 |
VAM+Product[ | 13.4 | 43.6 | 56.7 |
VAM+ImageDrop(192, 48)[ | 13.7 | 43.9 | 56.9 |
DREML[ | 18.6 | 51.0 | 59.1 |
KPM[ | 21.3 | 54.1 | 65.2 |
GRNeT[ | 25.7 | 64.4 | 75.0 |
SCR (Adaptive) | 29.2 | 51.0 | 61.4 |
Table 1 Comparison with state-of-the-art methods on DeepFashion consumer-to-shop benchmark
Methods | R@1 | R@20 | R@50 |
---|---|---|---|
FashionNet[ | 7.0 | 18.8 | 22.8 |
VAM+Nonshared[ | 11.3 | 38.8 | 51.5 |
VAM+Product[ | 13.4 | 43.6 | 56.7 |
VAM+ImageDrop(192, 48)[ | 13.7 | 43.9 | 56.9 |
DREML[ | 18.6 | 51.0 | 59.1 |
KPM[ | 21.3 | 54.1 | 65.2 |
GRNeT[ | 25.7 | 64.4 | 75.0 |
SCR (Adaptive) | 29.2 | 51.0 | 61.4 |
Loss Functions | R@1 | R@5 | R@1 | mAP | Mean |
---|---|---|---|---|---|
Triplet | 26.9 | 35.9 | 41.0 | 33.9 | 1 275 |
Quadruplet | 26.3 | 35.1 | 40.3 | 33.3 | 1 348 |
Adaptive | 29.2 | 38.6 | 44.0 | 36.6 | 1 091 |
Table 2 Instance-based retrieval results on DeepFashion
Loss Functions | R@1 | R@5 | R@1 | mAP | Mean |
---|---|---|---|---|---|
Triplet | 26.9 | 35.9 | 41.0 | 33.9 | 1 275 |
Quadruplet | 26.3 | 35.1 | 40.3 | 33.3 | 1 348 |
Adaptive | 29.2 | 38.6 | 44.0 | 36.6 | 1 091 |
Loss Functions | NDCG@1 | NDCG@10 | NDCG@50 |
---|---|---|---|
Triplet | 22.2 | 21.3 | 16.4 |
Quadruplet | 21.8 | 20.9 | 16.1 |
Adaptive | 23.9 | 22.8 | 17.5 |
Table 3 Semantic-based retrieval results on DeepFashion
Loss Functions | NDCG@1 | NDCG@10 | NDCG@50 |
---|---|---|---|
Triplet | 22.2 | 21.3 | 16.4 |
Quadruplet | 21.8 | 20.9 | 16.1 |
Adaptive | 23.9 | 22.8 | 17.5 |
1 | WIECZOREK M, MICHALOWSKI A, WROBLEWSKA A, et al. A strong baseline for fashion retrieval with person re-identification models [EB/OL]. (2020-03-09) [2021-11-05]. |
2 |
KIM S, SEO M, LAPTEV I, et al. Deep metric learning beyond binary supervision [EB/OL]. (2019-04-21) [2021-11-05]. . DOI: 10.1109/CVPR.2019.00239
DOI URL |
3 |
ZHOU M, NIU Z X, WANG L, et al. Ladder loss for coherent visual-semantic embedding [J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 13050–13057. DOI: 10.1609/aaai.v34i07.7006
DOI |
4 | WRAY M, DOUGHTY H, DAMEN. On semantic similarity in video retrieval [EB/OL]. [2021-11-05]. |
5 |
WANG X W, ZHANG T. Clothes search in consumer photos via color matching and attribute learning [C]//MM '11: Proceedings of the 19th ACM international conference on Multimedia. ACM, 2011: 1353–1356. DOI: 10.1145/2072298.2072013
DOI |
6 |
DI W, WAH C, BHARDWAJ A, et al. Style finder: fine-grained clothing style detection and retrieval [C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2013: 8–13. DOI: 10.1109/CVPRW.2013.6
DOI |
7 | FU J L, WANG J Q, LI Z C, et al. Efficient clothing retrieval with semantic preserving visual phrases [C]//Asian Conference on Computer Vision. ACCV, 2012: 420–431 |
8 |
GARCIA N, VOGIATZIS G. Dress like a star: Retrieving fashion products from videos [C]//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops. IEEE, 2017: 2293–2299. DOI: 10.1109/ICCVW.2017.270
DOI |
9 |
HUANG J, FERIS R S, CHEN Q, et al. Cross-domain image retrieval with a dual attribute-aware ranking network [C]//Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2015: 1062-1070. DOI: 10.1109/ICCV.2015.127
DOI |
10 |
KIAPOUR M H, HAN X F, LAZEBNIK S, et al. Where to buy it: matching street clothing photos in online shops [C]//Proceedings of 2015 IEEE International Conference on Computer Vision. IEEE, 2015: 3343–3351. DOI: 10.1109/ICCV.2015.382
DOI |
11 |
LIU Z W, LUO P, QIU S, et al. DeepFashion: powering robust clothes recognition and retrieval with rich annotations [J]. 2016 IEEE conference on computer vision and pattern recognition (CVPR), 2016: 1096–1104. DOI: 10.1109/CVPR.2016.124
DOI |
12 |
JI X, WANG W, ZHANG M H, et al. Cross-domain image retrieval with attention modeling [C]//Proceedings of the 25th ACM international conference on Multimedia. ACM, 2017: 1654–1662. DOI: 10.1145/3123266.3123429
DOI |
13 | SONG Y, LI Y, WU B, et al. Learning unified embedding for apparel recognition [EB/OL]. (2017-07-19) [2021-11-05]. |
14 |
CORBIÈRE C, BEN-YOUNES H, RAMÉ A, et al. Leveraging weakly annotated data for fashion image retrieval and label prediction [C]//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops. IEEE, 2017: 2268–2274. DOI: 10.1109/ICCVW.2017.266
DOI |
15 |
CHENG Z Q, WU X, LIU Y, et al. Video2Shop: exact matching clothes in videos to online shopping images [C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 4169–4177. DOI: 10.1109/CVPR.2017.444
DOI |
16 |
ZHANG Y H, PAN P, ZHENG Y, et al. Visual search at Alibaba [C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 993–1001. DOI: 10.1145/3219819.3219820
DOI |
17 |
KUANG Z H, GAO Y M, LI G B, et al. Fashion retrieval via graph reasoning networks on a similarity pyramid [C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 3066–3075. DOI: 10.1109/ICCV.2019.00316
DOI |
18 |
LUO H, JIANG W, GU Y Z, et al. A strong baseline and batch normalization neck for deep person re-identification [J]. IEEE transactions on multimedia, 2020, 22(10): 2597–2609. DOI: 10.1109/TMM.2019.2958756
DOI |
19 |
HADSELL R, CHOPRA S, LECUN Y. Dimensionality reduction by learning an invariant mapping [C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2006: 1735–1742. DOI: 10.1109/CVPR.2006.100
DOI |
20 | WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification [J]. Journal of machine learning research, 2009, 10(2): 207–244 |
21 |
GORDO A, LARLUS D. Beyond instance-level image retrieval: leveraging captions to learn a global visual representation for semantic retrieval [C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 5272–5281. DOI: 10.1109/CVPR.2017.560
DOI |
22 |
ARANDJELOVIC R, GRONAT P, TORII A, et al. NetVLAD: CNN architecture for weakly supervised place recognition [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 5297–5307. DOI: 10.1109/CVPR.2016.572
DOI |
23 |
BALNTAS V, LI S D, PRISACARIU V. RelocNet: continuous metric learning relocalisation using neural nets [C]//Computer Vision. ECCV, 2018: 751–767. DOI: 10.1007/978-3-030-01264-9_46
DOI |
24 |
JÄRVELIN K, KEKÄLÄINEN J. Cumulated gain-based evaluation of IR techniques [J]. ACM transactions on information systems, 2002, 20(4): 422–446. DOI: 10.1145/582415.582418
DOI |
25 | LIU T Y. Learning to rank for information retrieval [M]. Berlin, Germany: Springer. 2011 |
26 |
WANG Z H, GU Y J, ZHANG Y, et al. Clothing retrieval with visual attention model [C]//Proceedings of 2017 IEEE Visual Communications and Image Processing. IEEE, 2017: 1–4. DOI: 10.1109/VCIP.2017.8305144
DOI |
27 |
XUAN H, SOUVENIR R, PLESS R. Deep randomized ensembles for metric learning [C]//Computer vision. ECCV, 2018: 723–734. DOI: 10.1007/978-3-030-01270-0_44
DOI |
28 |
SHEN Y, XIAO T, LI H, et al. End-to-end deep kronecker-product matching for person re-identification [C]//Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition. IEEE, 2018: 6886–6895. DOI: 10.48550/arXiv.1807.11182
DOI |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||