ZTE Communications ›› 2022, Vol. 20 ›› Issue (1): 21-27.DOI: 10.12142/ZTECOM.202201004
• Special Topic • Previous Articles Next Articles
TANG Junwen(), XU Shenheng(), YANG Fan, LI Maokun
Received:
2022-01-24
Online:
2022-03-25
Published:
2022-04-06
About author:
TANG Junwen (TANG Junwen, XU Shenheng, YANG Fan, LI Maokun. Recent Developments of Transmissive Reconfigurable Intelligent Surfaces: A Review[J]. ZTE Communications, 2022, 20(1): 21-27.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202201004
Figure 2 Schematics of single-polarized 1-bit transmissive reconfigurable intelligent surface (RIS) elements: (a) linear polarization in Ref. [14]; (b) linear-circular polarization conversion in Ref. [16]; (c) slot coupling structure in Ref. [19]; (d) variable resonance design in Ref. [23]
Figure 3 Schematics of the dual-linear polarized 1-bit transmissive reconfigurable intelligent surface (RIS) element designs: (a) two orthogonal radiating modes of the same radiator in Ref. [25]; (b) two sets of via-fed dipoles with parasitic dipoles in Ref. [27]
Figure 4 Schematics of the 2-bit transmissive reconfigurable intelligent surface (RIS) element designs: (a) dual polarization with five radio frequency (RF) microelectromechanical system (MEMS) switches in Refs. [28-29]; (b) O-slot patches loaded with four p-i-n diodes in Ref. [30]
Figure 5 Transmissive reconfigurable intelligent surface (RIS) element designs with 360° phase controlling: (a) two cascaded bridged-T phase shifters in Ref. [5]; (b) a 180° analog phase shifter combined with 1-bit phase shifter in Ref. [9]
Figure 6 Transmissive reconfigurable intelligent surface (RIS) element designs with 360° phase controlling: (a) an element with three resonant structures in Ref. [6]; (b) 5-layer stacked frequency selective surface (FSS) structure in Ref. [13]
1 |
LIASKOS C, NIE S, TSIOLIARIDOU A, et al. A new wireless communication paradigm through software-controlled metasurfaces [J]. IEEE communications magazine, 2018, 56(9): 162–169. DOI: 10.1109/MCOM.2018.1700659
DOI |
2 |
TANG W, LI X, DAI J, et al. Wireless communications with programmable metasurface: transceiver design and experimental results [J]. China communications, 2019, 16(5): 46–61. DOI: 10.23919/J.CC.2019.05.004
DOI |
3 |
DAI L, WANG B, WANG M, et al. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results [J]. IEEE access, 2020, 8: 45913–45923. DOI: 10.1109/ACCESS.2020.2977772
DOI |
4 |
LAU J Y, HUM S V. A wideband reconfigurable transmitarray element [J]. IEEE transactions on antennas and propagation, 2011, 60(3): 1303–1311. DOI: 10.1109/TAP.2011.2180475
DOI |
5 |
LAU J Y, HUM S V. Reconfigurable transmitarray design approaches for beamforming applications [J]. IEEE transactions on antennas and propagation, 2012, 60(12): 5679–5689. DOI: 10.1109/TAP.2012.2213054
DOI |
6 |
LAU J Y, HUM S V. Analysis and characterization of a multipole reconfigurable transmitarray element [J]. IEEE transactions on antennas and propagation, 2010, 59(1): 70–79. DOI: 10.1109/TAP.2010.2090456
DOI |
7 |
HUANG C, PAN W, MA X, et al. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications [J]. IEEE transactions on antennas and propagation, 2015, 63(11): 4801–4810. DOI: 10.1109/TAP.2015.2479648
DOI |
8 |
HUANG C, PAN W, LUO X. Low-loss circularly polarized transmitarray for beam steering application [J]. IEEE transactions on antennas and propagation, 2016, 64(10): 4471–4476. DOI: 10.1109/TAP.2016.2586580
DOI |
9 |
TANG J, XU S, YANG F, et al. Design and measurement of a reconfigurable transmitarray antenna with compact varactor-based phase shifters [J]. IEEE antennas and wireless propagation letters, 2021, 20(10): 1998–2002. DOI: 10.1109/LAWP.2021.3101891
DOI |
10 |
FRANK M, LURZ F, WEIGEL R, et al. Electronically reconfigurable 6× 6 element transmitarray at K-band based on unit cells with continuous phase range [J]. IEEE antennas and wireless propagation letters, 2019, 18(4): 796–800. DOI: 10.1109/LAWP.2019.2903338
DOI |
11 |
BOCCIA L, RUSSO I, AMENDOLA G, et al. Multilayer antenna-filter antenna for beam-steering transmit-array applications [J]. IEEE transactions on microwave theory and techniques, 2012, 60(7): 2287–2300. DOI: 10.1109/TMTT.2012.2195673
DOI |
12 |
REIS J R, COPNER N, HAMMOUDEH A, et al. FSS-inspired transmitarray for two-dimensional antenna beamsteering [J]. IEEE transactions on antennas and propagation, 2016, 64(6): 2197–2206. DOI: 10.1109/TAP.2016.2543802
DOI |
13 |
REIS J R, CALDEIRINHA R F S, HAMMOUDEH A, et al. Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering [J]. IEEE transactions on antennas and propagation, 2017, 65(9): 4880–4885. DOI: 10.1109/TAP.2017.2723087
DOI |
14 |
CLEMENTE A, DUSSOPT L, SAULEAU R, et al. 1-bit reconfigurable unit cell based on PIN diodes for transmit-array applications in X-band [J]. IEEE transactions on antennas and propagation, 2012, 60(5): 2260–2269. DOI: 10.1109/TAP.2012.2189716
DOI |
15 |
CLEMENTE A, DUSSOPT L, SAULEAU R, et al. Wideband 400-element electronically reconfigurable transmitarray in X band [J]. IEEE transactions on antennas and propagation, 2013, 61(10): 5017–5027. DOI: 10.1109/TAP.2013.2271493
DOI |
16 |
DI PALMA L, CLEMENTE A, DUSSOPT L, et al. Experimental characterization of a circularly polarized 1 bit unit cell for beam steerable transmitarrays at Ka-band [J]. IEEE transactions on antennas and propagation, 2018, 67(2): 1300–1305. DOI: 10.1109/TAP.2018.2880095
DOI |
17 |
PAN W, HUANG C, MA X, et al. A dual linearly polarized transmitarray element with 1-bit phase resolution in X-band [J]. IEEE antennas and wireless propagation letters, 2014, 14: 167–170. DOI: 10.1109/LAWP.2014.2358267
DOI |
18 |
HUANG C, PAN W, MA X, et al. 1-bit reconfigurable circularly polarized transmitarray in X-band [J]. IEEE antennas and wireless propagation letters, 2015, 15: 448–451. DOI: 10.1109/LAWP.2015.2451697
DOI |
19 |
WANG M, XU S, YANG F, et al. Design and measurement of a 1-bit reconfigurable transmitarray with subwavelength H-shaped coupling slot elements [J]. IEEE transactions on antennas and propagation, 2019, 67(5): 3500–3504. DOI: 10.1109/TAP.2019.2902676
DOI |
20 |
WANG Y, XU S, YANG F, et al. A novel 1 bit wide-angle beam scanning reconfigurable transmitarray antenna using an equivalent magnetic dipole element [J]. IEEE transactions on antennas and propagation, 2020, 68(7): 5691–5695. DOI: 10.1109/TAP.2020.2964954
DOI |
21 |
WANG M, XU S, YANG F, et al. A novel 1-bit reconfigurable transmitarray antenna using a C-shaped probe-fed patch element with broadened bandwidth and enhanced efficiency [J]. IEEE access, 2020, 8: 120124–120133. DOI: 10.1109/ACCESS.2020.3004435
DOI |
22 |
XIAO Y, YANG F, XU S, et al. Design and implementation of a wideband 1-bit transmitarray based on a yagi-vivaldi unit cell [J]. IEEE transactions on antennas and propagation, 2021 69(7): 4229–4234. DOI: 10.1109/TAP.2020.3048496
DOI |
23 |
NGUYEN B D, PICHOT C. Unit-cell loaded with PIN diodes for 1-bit linearly polarized reconfigurable transmitarrays [J]. IEEE antennas and wireless propagation letters, 2018, 18(1): 98–102. DOI: 10.1109/LAWP.2018.2881555
DOI |
24 |
WANG M, XU S, YANG F, et al. A novel 1-bit dual-linear polarized reconfigurable transmitarray element using double-layer dipoles [C]//IEEE Asia-Pacific Microwave Conference (APMC). IEEE, 2019: 685–687. DOI: 10.1109/APMC46564.2019.9038225
DOI |
25 | MUNINA I, TURALCHUK P, VEREVKIN A, et al. A study of C-band 1-bit reconfigurable dual-polarized transmitarray [C]//13th European Conference on Antennas and Propagation (EuCAP). EurAAP, 2019: 1–5 |
26 | PHAM K, SAULEAU R, CLEMENTE A, et al. Electronically reconfigurable unit-cell and transmitarray in dual-linear polarization at Ka-band [C]//13th European Conference on Antennas and Propagation (EuCAP). EurAAP, 2019: 1–4 |
27 |
WANG Y, XU S, YANG F, et al. 1 bit dual-linear polarized reconfigurable transmitarray antenna using asymmetric dipole elements with parasitic bypass dipoles [J]. IEEE transactions on antennas and propagation, 2021, 69(2): 1188–1192. DOI: 10.1109/TAP.2020.3005713
DOI |
28 |
CHENG C C, ABBASPOUR-TAMIJANI A. Study of 2-bit antenna-filter-antenna elements for reconfigurable millimeter-wave lens arrays [J]. IEEE transactions on microwave theory and techniques, 2006, 54(12): 4498–4506. DOI: 10.1109/TMTT.2006.885993
DOI |
29 |
CHENG C C, LAKSHMINARAYANAN B, ABBASPOUR-TAMIJANI A. A programmable lens-array antenna with monolithically integrated MEMS switches [J]. IEEE transactions on microwave theory and techniques, 2009, 57(8): 1874–1884. DOI: 10.1109/TMTT.2009.2025422
DOI |
30 |
DIABY F, CLEMENTE A, DI PALMA L, et al. Design of a 2-bit unit-cell for electronically reconfigurable transmitarrays at Ka-band [C]//47th European Microwave Conference (EuMC). EuMA, 2017: 1321–1324. DOI: 10.23919/EuMC.2017.8231095
DOI |
31 |
TANG J, XU S, YANG F. Design of a 2.5-D 2-bit reconfigurable transmitarray element for 5G mmwave applications [C]//IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020: 631–632. DOI: 10.1109/IEEECONF35879.2020.9330153
DOI |
32 |
WU B, SUTINJO A, POTTER M E, et al. On the selection of the number of bits to control a dynamic digital MEMS reflectarray [J]. IEEE antennas and wireless propagation letters, 2008, 7: 183–186. DOI: 10.1109/LAWP.2008.920908
DOI |
33 |
YANG H, YANG F, XU S, et al. A study of phase quantization effects for reconfigurable reflectarray antennas [J]. IEEE antennas and wireless propagation letters, 2017, 16: 302–305. DOI: 10.1109/LAWP.2016.2574118
DOI |
34 |
WU Q, ZHANG R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts [J]. IEEE transactions on communications, 2020, 68(3): 1838–1851. DOI: 10.1109/TCOMM.2019.2958916
DOI |
35 |
BUCKMASTER J G, LEE T H. An electronically steerable millimeter-wave reflectarray for wireless power delivery [C]//50th European Microwave Conference (EuMC). EuMA, 2021: 514–517. DOI: 10.23919/EuMC48046.2021.9338208
DOI |
36 |
ZENG S, ZHANG H, DI B, et al. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization [J]. Communications letters, 2020, 25(1): 269–273. DOI: 10.1109/LCOMM.2020.3025345
DOI |
37 |
MILLER C L, DMOCHOWSKI P A, SMITH P J. Efficient channel estimation for RIS [C]//IEEE International Conference on Communications. IEEE, 2021: 1–6. DOI: 10.1109/ICC42927.2021.9500469
DOI |
[1] | ZHOU Yiheng, ZENG Wei, ZHENG Qingfang, LIU Zhilong, CHEN Jianping. A Survey on Task Scheduling of CPU-GPU Heterogeneous Cluster [J]. ZTE Communications, 2024, 22(3): 83-90. |
[2] | LIU Mengyu, ZHANG Yang, JIN Yasheng, ZHI Kangda, PAN Cunhua. Towards Near-Field Communications for 6G: Challenges and Opportunities [J]. ZTE Communications, 2024, 22(1): 3-15. |
[3] | LU Zhizheng, HAN Yu, JIN Shi. Impacts of Model Mismatch and Array Scale on Channel Estimation for XL-HRIS-Aided Systems [J]. ZTE Communications, 2024, 22(1): 24-33. |
[4] | ZHAO Yaqiong, KE Hongqin, XU Wei, YE Xinquan, CHEN Yijian. RIS-Assisted Cell-Free MIMO: A Survey [J]. ZTE Communications, 2024, 22(1): 77-86. |
[5] | ZHU Zhihao, ZHANG Yueping. Differential Quasi-Yagi Antenna and Array [J]. ZTE Communications, 2023, 21(3): 37-44. |
[6] | WANG Yiji, WEN Dingzhu, MAO Yijie, SHI Yuanming. RIS-Assisted Federated Learning in Multi-Cell Wireless Networks [J]. ZTE Communications, 2023, 21(1): 25-37. |
[7] | FAN Guotian, WANG Zhibin. Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model [J]. ZTE Communications, 2022, 20(S1): 36-43. |
[8] | SUN Shuyi, WEN Geyi. Optimal Design of Wireless Power Transmission Systems Using Antenna Arrays [J]. ZTE Communications, 2022, 20(2): 19-27. |
[9] | SHEN Jun, ZHAO Tianxiang, LIU Xueguan. Polarization Reconfigurable Patch Antenna for Wireless Power Transfer Related Applications [J]. ZTE Communications, 2022, 20(2): 37-42. |
[10] | HOU Xiaolin, LI Xiang, WANG Xin, CHEN Lan, SUYAMA Satoshi. Some Observations and Thoughts about Reconfigurable Intelligent Surface Application for 5G Evolution and 6G [J]. ZTE Communications, 2022, 20(1): 14-20. |
[11] | JIAN Mengnan, ZHANG Nan, CHEN Yijian. RIS: Spatial‑Wideband Effect Analysis and Off‑Grid Channel Estimation [J]. ZTE Communications, 2022, 20(1): 57-62. |
[12] | YE Lianghua, CAO Yunfei, ZHANG Xiuyin. Multibeam Antenna Based on Butler Matrix for 3G/LTE/5G/B5G Base Station Applications [J]. ZTE Communications, 2020, 18(3): 12-19. |
[13] | LI Yezhen, REN Yongli, YANG Fan, XU Shenheng, ZHANG Jiannian. A Novel 28 GHz Phased Array Antenna for 5G Mobile Communications [J]. ZTE Communications, 2020, 18(3): 20-25. |
[14] | CHANG Su-Wei, LIN Chueh-Jen, TSAI Wen-Tsai, HUNG Tzu-Chieh, HUANG Po-Chia. Design of Millimeter-Wave Antenna-in-Package (AiP) for 5G NR [J]. ZTE Communications, 2020, 18(3): 26-32. |
[15] | HE Yejun, JIANG Jiachun, ZHANG Long, LI Wenting, WONG Sai-Wai, DENG Wei, CHI Baoyong. Leaky-Wave Antennas for 5G/B5G Mobile Communication Systems: A Survey [J]. ZTE Communications, 2020, 18(3): 3-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||