1 |
YAP K H, CHEN T, LI Z, et al. A comparative study of mobile⁃based landmark recognition techniques [J]. IEEE intelligent systems, 2010, 25(1): 48–57. DOI:10.1109/mis.2010.12
DOI
|
2 |
JIANG J C, ANANTHANARAYANAN G, BODIK P, et al. Chameleon: scalable adaptation of video analytics [C]//2018 Conference of the ACM Special Interest Group on Data Communication. Budapest, Hungary, 2018:253–266. DOI:10.1145/3230543.3230574
DOI
|
3 |
Multi⁃access edge computing⁃standards for MEC [EB/OL].(2019⁃11⁃04)[2020⁃01⁃05].
|
|
⁃clusters/technologies/multi⁃access⁃edge⁃computing
|
4 |
YU S, CHEN X, YANG L, et al. Intelligent edge: leveraging deep imitation learning for mobile edge computation offloading [J]. IEEE wireless communications, 2020, 27(1): 92–99. DOI:10.1109/mwc.001.1900232
DOI
|
5 |
ZHANG T H, MCCARTHY Z, JOW O, et al. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation [C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia, 2018: 1–8. DOI:10.1109/icra.2018.8461249
DOI
|
6 |
CHEN X, JIAO L, LI W Z, et al. Efficient multi⁃user computation offloading for mobile⁃edge cloud computing [J]. ACM transactions on networking, 2016, 24(5): 2795–2808. DOI:10.1109/tnet.2015.2487344
DOI
|
7 |
HE Y, ZHAO N, YIN H X. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach [J]. IEEE transactions on vehicular technology, 2018, 67(1): 44–55. DOI:10.1109/tvt.2017.2760281
DOI
|
8 |
BA L J, CARUANA R. Do deep nets really need to be deep? [EB/OL].(2014⁃10⁃11) [2020⁃01⁃05].
|
9 |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL].(2015⁃03⁃09)[2020⁃01⁃10].
|
10 |
RAN X, CHEN H, ZHU X, et al. Deep decision: A mobile deep learning framework for edge video analytics [C]//IEEE INFOCOM 2018⁃IEEE Conference on Computer Communications. IEEE, 2018: 1421–1429
|
11 |
KANG Y P, HAUSWALD J, GAO C, et al. Neurosurgeon: collaborative intelligence between the cloud and mobile edge [J]. ACM SIGARCH computer architecture news, 2017, 45(1): 615–629. DOI:10.1145/3093337.3037698
DOI
|
12 |
CUERVO E, BALASUBRAMANIAN A, D⁃KCHO, et al. MAUI: Making smartphones last longer with code offload [C]//Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services. San Francisco, USA, 2010: 49–62
|
13 |
TSOUMAKAS G, KATAKIS I. Multi⁃label classification [J]. International journal of data warehousing and mining, 2007, 3(3): 1–13. DOI:10.4018/jdwm.2007070101
DOI
|
14 |
YOU C S, ZENG Y, ZHANG R, et al. Asynchronous mobile⁃edge computation offloading: energy⁃efficient resource management [J]. IEEE transactions on wireless communications, 2018, 17(11): 7590–7605. DOI:10.1109/twc.2018.2868710
DOI
|
15 |
ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [EB/OL]. (2019⁃05⁃24)[2020⁃01⁃05]. DOI:10.1109/JPROC.2019.2918951
DOI
|
16 |
CHEN X, PU L, GAO L, et al. Exploiting massive D2D collaboration for energy⁃efficient mobile edge computing [J]. IEEE wireless communications, 2017, 24(4): 64–71. DOI:10.1109/MWC.2017.1600321
DOI
|