ZTE Communications ›› 2020, Vol. 18 ›› Issue (2): 31-39.DOI: 10.12142/ZTECOM.202002005
• Special Topic • Previous Articles Next Articles
YANG Kai, ZHOU Yong(), YANG Zhanpeng, SHI Yuanming
Received:
2020-02-10
Online:
2020-06-25
Published:
2020-08-07
About author:
YANG Kai received the B.S. degree in electronic engineering from Dalian University of Technology, China in 2015. He is currently working toward the Ph.D. degree with the School of Information Science and Technology, ShanghaiTech University, China, also with the Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China, and also with the University of Chinese Academy of Sciences, Beijing, China. His research interests include data processing and optimization for mobile edge artificial intelligence.|ZHOU Yong (YANG Kai, ZHOU Yong, YANG Zhanpeng, SHI Yuanming. Communication-Efficient Edge AI Inference over Wireless Networks[J]. ZTE Communications, 2020, 18(2): 31-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202002005
1 |
MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE communications surveys & tutorials, 2017, 19 (Fourthquarter): 2322–2358. DOI: 10.1109/COMST.2017.2745201
DOI |
2 |
LETAIEF K B, CHEN W, SHI Y M, et al. The roadmap to 6G: AI empowered wireless networks [J]. IEEE communications magazine, 2019, 57(8): 84–90. DOI: 10.1109/MCOM.2019.1900271
DOI |
3 |
YANG K, SHI Y M, DING Z. Data shuffling in wireless distributed computing via low⁃rank optimization [J]. IEEE transactions on signal processing, 2019, 67(12): 3087–3099. DOI:10.1109/tsp.2019.2912139
DOI |
4 |
LI S Z, MADDAH⁃ALI M A, YU Q, et al. A fundamental tradeoff between computation and communication in distributed computing [J]. IEEE transactions on information theory, 2018, 64(1): 109–128. DOI: 10.1109/TIT.2017.2756959
DOI |
5 |
LI S Z, MADDAH⁃ALI M A, AVESTIMEHR A S. Coding for distributed fog computing [J]. IEEE communications magazine, 2017, 55(4): 34–40. DOI: 10.1109/mcom.2017.1600894
DOI |
6 |
GESBERT D, HANLY S, HUANG H, et al. Multi⁃cell MIMO cooperative networks: a new look at interference [J]. IEEE journal on selected areas in communications, 2010, 28(9): 1380–1408. DOI: 10.1109/jsac.2010.101202
DOI |
7 | YUAN X J, ZHANG Y⁃J, SHI Y M, et al. Reconfigurable⁃intelligent⁃surface empowered 6G wireless communications: challenges and opportunities [EB/OL]. (2020⁃01⁃02). |
8 |
ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. DOI: 10.1109/jproc.2019.2918951
DOI |
9 |
PARK J, SAMARAKOON S, BENNIS M, et al. Wireless network intelligence at the edge [J]. Proceedings of the IEEE, 2019, 107(11): 2204–2239. DOI: 10.1109/jproc.2019.2941458
DOI |
10 |
YANG K., SHI Y M, YU W, et al. Energy⁃efficient processing and robust wireless cooperative transmission for edge inference [J]. IEEE internet of things journal, 2020. DOI: 10.1109/JIOT.2020.2979523
DOI |
11 | HUA S, ZHOU Y, YANG K, et al. Reconfigurable intelligent surface for green edge inference [EB/OL]. (2019⁃12⁃02). |
12 |
LI E, ZENG L K, ZHOU Z, et al. Edge AI: On⁃demand accelerating deep neural network inference via edge computing [J]. IEEE transactions on wireless communications, 2020, 19(1): 447–457. DOI: 10.1109/twc.2019.2946140
DOI |
13 |
ESHRATIFAR A E, ABRISHAMI M S, PEDRAM M. JointDNN: an efficient training and inference engine for intelligent mobile cloud computing services [J]. IEEE transactions on mobile computing, 2019: 1. DOI: 10.1109/tmc.2019.2947893
DOI |
14 |
ZHANG J, LETAIEF K B. Mobile edge intelligence and computing for the internet of vehicles [J]. Proceedings of the IEEE, 2020, 108(2): 246–261. DOI: 10.1109/jproc.2019.2947490
DOI |
15 |
ZENG Y, WU Q Q, ZHANG R. Accessing from the sky: a tutorial on UAV communications for 5g and beyond [J]. Proceedings of the IEEE, 2019, 107(12): 2327–2375. DOI: 10.1109/jproc.2019.2952892
DOI |
16 |
HADDADIN S, JOHANNSMEIER L, LEDEZMA F D. Tactile robots as a central embodiment of the tactile Internet [J]. Proceedings of the IEEE, 2019, 107(2): 471–487. DOI: 10.1109/JPROC.2018.2879870
DOI |
17 |
LIU K Q, TAO M X. Generalized signal alignment: on the achievable DoF for multi⁃user MIMO two⁃way relay channels [J]. IEEE transactions on information theory, 2015, 61(6): 3365–3386. DOI: 10.1109/tit.2015.2420100
DOI |
18 | TAO P D, AN L T H. Convex analysis approach to DC programming: theory, algorithms and applications [J]. Acta mathematica vietnamica, 1997, 22(1): 289–355 |
19 |
LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436–444. DOI: 10.1038/nature14539
DOI |
20 | LI K K, TAO M X, CHEN Z Y. Exploiting computation replication for mobile edge computing: a fundamental computation⁃communication tradeoff study [EB/OL]. (2019⁃03⁃26). |
21 |
YANG T⁃J, CHEN Y⁃H, SZE V. Designing energy⁃efficient convolutional neural networks using energy⁃aware pruning [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA, 2017: 5687–5695. DOI: 10.1109/cvpr.2017.643
DOI |
22 | GONG S M, LU X, HOANG D T, et al. Towards smart radio environment for wireless communications via intelligent reflecting surfaces: a comprehensive survey [EB/OL]. (2019⁃12⁃17). |
[1] | YANG Howard H., ZHAO Zhongyuan, QUEK Tony Q. S.. Enabling Intelligence at Network Edge:An Overview of Federated Learning [J]. ZTE Communications, 2020, 18(2): 2-10. |
[2] | SHI Lei, ZHAO Liang, SONG Wenzhan, Goutham Kamath, WU Yuan, LIU Xuefeng. Distributed Least-Squares Iterative Methods in Large-Scale Networks: A Survey [J]. ZTE Communications, 2017, 15(3): 37-45. |
[3] | Zhao Pei, Lu Ping, Luo Shengmei. Cloud Computing Technology and Its Applications [J]. ZTE Communications, 2010, 8(4): 34-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||