1 |
AI B, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways [J]. Proceedings of the IEEE, 2020, 108(6): 856–893. DOI: 10.1109/JPROC.2020.2988595
DOI
URL
|
2 |
ZHONG Z D, GUAN K, CHEN W. Challenges and perspective of new generation of railway mobile communications [J]. ZTE Technology Journal, 2021, 27(4): 44-50. DOI:10.12142/ZTETJ.202104009
DOI
URL
|
3 |
AI B, GUAN K, RUPP M, et al. Future railway services-oriented mobile communications network [J]. IEEE communications magazine, 2015, 53(10): 78–85. DOI: 10.1109/MCOM.2015.7295467
DOI
URL
|
4 |
ZHAO Y J, ZHANG J Y, AI B. Applications of reconfigurable intelligent surface in smart High speed train communications [J]. ZTE Technology Journal, 2021, 27(4): 36-43. DOI: 10.12142/ZTETJ.202104008
DOI
URL
|
5 |
YANG M, HE R S, AI B, et al. Measurement-based channel characterization for 5G wireless communications on campus scenario [J]. ZTE communications, 2017, 15(1): 8–13. DOI: 10.3969/j.issn.1673-5188.2017.01.002
DOI
URL
|
6 |
LU J H, ZHU G, AI B. Radio propagation measurements and modeling in railway viaduct area [C]//6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). IEEE, 2010: 1–5. DOI: 10.1109/WICOM.2010.5600926
DOI
URL
|
7 |
WEI H, ZHONG Z D, GUAN K, et al. Path loss models in viaduct and plain scenarios of the High-speed Railway [C]//5th International ICST Conference on Communications and Networking in China. IEEE, 2010: 1–5. DOI: 10.4108/iwoncmm.2010.3
DOI
URL
|
8 |
HE R S, ZHONG Z D, AI B. Path loss measurements and analysis for high-speed railway viaduct scene [C]//6th International Wireless Communications and Mobile Computing Conference. New York: ACM, 2010: 266–270. DOI: 10.1145/1815396.1815458
DOI
URL
|
9 |
NEWHALL W G, SALDANHA K J, RAPPAPORT T S. Propagation time delay spread measurements at 915 MHz in a large train yard [C]//IEEE Vehicular Technology Conference. IEEE, 2002: 864–868. DOI: 10.1109/VETEC.1996.501434
DOI
URL
|
10 |
KNORZER S, BALDAUF M A, FUGEN T, et al. Channel modelling for an OFDM train communications system including different antenna types [C]//64th Vehicular Technology Conference. IEEE, 2006: 1–5. DOI: 10.1109/VTCF.2006.55
DOI
URL
|
11 |
KNORZER S, BALDAUF M A, FUGEN T, et al. Channel analysis for an OFDM-MISO train communications system using different antennas [C]//66th Vehicular Technology Conference. IEEE, 2007: 809–813. DOI: 10.1109/VETECF.2007.178
DOI
URL
|
12 |
BRISO-RODRÍGUEZ C, FRATILESCU P, XU Y Y. Path loss modeling for train-to-train communications in subway tunnels at 900/2400 MHz [J]. IEEE antennas and wireless propagation letters, 2019, 18(6): 1164–1168. DOI: 10.1109/LAWP.2019.2911406
DOI
URL
|
13 |
TANG P. Channel characteristics for 5G systems in urban rail viaduct based on ray-tracing [C]//4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE, 2022: 24–28. DOI: 10.1109/ISRITI54043.2021.9702771
DOI
URL
|
14 |
MOLISCH A F. Wireless communications [M]. Hoboken, USA: John Wiley & Sons, 2005
|
15 |
WEN Y H, MA Y S, ZHANG X Y, et al. Channel fading statistics in high-speed mobile environment [C]//IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2012: 1209–1212. DOI: 10.1109/APWC.2012.6324963
DOI
URL
|