ZTE Communications ›› 2023, Vol. 21 ›› Issue (3): 117-122.DOI: 10.12142/ZTECOM.202303015
• Research Papers • Previous Articles
DING Jianwen1, LIU Yao1(), LIAO Hongjian1, SUN Bin1, WANG Wei2
Received:
2022-10-25
Online:
2023-09-21
Published:
2023-09-21
About author:
DING Jianwen received his MS and PhD degrees from Beijing Jiaotong University, China in 2005 and 2019, respectively. He is currently a professor of National Research Center of Railway Safety Assessment, Beijing Jiaotong University. He received the first prize of progress in science and technology of the Chinese Railway Society. His research interests are broadband mobile communications, dedicated mobile communication system for railway, and safety communication technology for train control system.|LIU YAO (Supported by:
DING Jianwen, LIU Yao, LIAO Hongjian, SUN Bin, WANG Wei. Statistical Model of Path Loss for Railway 5G Marshalling Yard Scenario[J]. ZTE Communications, 2023, 21(3): 117-122.
Scenario | Correction Factor | Correction Factor |
---|---|---|
Urban area | -20.47 | -1.82 |
Suburbs | -6.72 | |
Rural | -6.71 | |
Viaduct | -21.42 | -9.62 |
Cutting | -18.78 | |
Station | -8.86 |
Table 1 Correction factors of Hata model in different scenarios
Scenario | Correction Factor | Correction Factor |
---|---|---|
Urban area | -20.47 | -1.82 |
Suburbs | -6.72 | |
Rural | -6.71 | |
Viaduct | -21.42 | -9.62 |
Cutting | -18.78 | |
Station | -8.86 |
Cell Number | Path Loss | Path-Loss Exponent n | Correction Factor | Correction Factor |
---|---|---|---|---|
62 | 4.565 0 | 4.513 81 | -134.29 | 10.16 |
63 | 7.949 0 | 4.347 35 | -131.07 | 9.25 |
64 | 3.651 2 | 4.358 74 | -136.12 | 8.37 |
143 | -3.014 8 | 4.542 59 | -141.86 | 10.64 |
150 | -7.115 8 | 4.472 55 | -145.97 | 9.95 |
151 | -4.066 2 | 4.482 93 | -142.92 | 10.05 |
156 | -4.460 3 | 4.442 59 | -143.31 | 9.64 |
184 | -13.105 2 | 4.438 65 | -151.96 | 9.44 |
185 | 0.043 9 | 4.447 31 | -138.89 | 9.53 |
Table 2 Fitting measurement results
Cell Number | Path Loss | Path-Loss Exponent n | Correction Factor | Correction Factor |
---|---|---|---|---|
62 | 4.565 0 | 4.513 81 | -134.29 | 10.16 |
63 | 7.949 0 | 4.347 35 | -131.07 | 9.25 |
64 | 3.651 2 | 4.358 74 | -136.12 | 8.37 |
143 | -3.014 8 | 4.542 59 | -141.86 | 10.64 |
150 | -7.115 8 | 4.472 55 | -145.97 | 9.95 |
151 | -4.066 2 | 4.482 93 | -142.92 | 10.05 |
156 | -4.460 3 | 4.442 59 | -143.31 | 9.64 |
184 | -13.105 2 | 4.438 65 | -151.96 | 9.44 |
185 | 0.043 9 | 4.447 31 | -138.89 | 9.53 |
1 |
AI B, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways [J]. Proceedings of the IEEE, 2020, 108(6): 856–893. DOI: 10.1109/JPROC.2020.2988595
DOI URL |
2 |
ZHONG Z D, GUAN K, CHEN W. Challenges and perspective of new generation of railway mobile communications [J]. ZTE Technology Journal, 2021, 27(4): 44-50. DOI:10.12142/ZTETJ.202104009
DOI URL |
3 |
AI B, GUAN K, RUPP M, et al. Future railway services-oriented mobile communications network [J]. IEEE communications magazine, 2015, 53(10): 78–85. DOI: 10.1109/MCOM.2015.7295467
DOI URL |
4 |
ZHAO Y J, ZHANG J Y, AI B. Applications of reconfigurable intelligent surface in smart High speed train communications [J]. ZTE Technology Journal, 2021, 27(4): 36-43. DOI: 10.12142/ZTETJ.202104008
DOI URL |
5 |
YANG M, HE R S, AI B, et al. Measurement-based channel characterization for 5G wireless communications on campus scenario [J]. ZTE communications, 2017, 15(1): 8–13. DOI: 10.3969/j.issn.1673-5188.2017.01.002
DOI URL |
6 |
LU J H, ZHU G, AI B. Radio propagation measurements and modeling in railway viaduct area [C]//6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). IEEE, 2010: 1–5. DOI: 10.1109/WICOM.2010.5600926
DOI URL |
7 |
WEI H, ZHONG Z D, GUAN K, et al. Path loss models in viaduct and plain scenarios of the High-speed Railway [C]//5th International ICST Conference on Communications and Networking in China. IEEE, 2010: 1–5. DOI: 10.4108/iwoncmm.2010.3
DOI URL |
8 |
HE R S, ZHONG Z D, AI B. Path loss measurements and analysis for high-speed railway viaduct scene [C]//6th International Wireless Communications and Mobile Computing Conference. New York: ACM, 2010: 266–270. DOI: 10.1145/1815396.1815458
DOI URL |
9 |
NEWHALL W G, SALDANHA K J, RAPPAPORT T S. Propagation time delay spread measurements at 915 MHz in a large train yard [C]//IEEE Vehicular Technology Conference. IEEE, 2002: 864–868. DOI: 10.1109/VETEC.1996.501434
DOI URL |
10 |
KNORZER S, BALDAUF M A, FUGEN T, et al. Channel modelling for an OFDM train communications system including different antenna types [C]//64th Vehicular Technology Conference. IEEE, 2006: 1–5. DOI: 10.1109/VTCF.2006.55
DOI URL |
11 |
KNORZER S, BALDAUF M A, FUGEN T, et al. Channel analysis for an OFDM-MISO train communications system using different antennas [C]//66th Vehicular Technology Conference. IEEE, 2007: 809–813. DOI: 10.1109/VETECF.2007.178
DOI URL |
12 |
BRISO-RODRÍGUEZ C, FRATILESCU P, XU Y Y. Path loss modeling for train-to-train communications in subway tunnels at 900/2400 MHz [J]. IEEE antennas and wireless propagation letters, 2019, 18(6): 1164–1168. DOI: 10.1109/LAWP.2019.2911406
DOI URL |
13 |
TANG P. Channel characteristics for 5G systems in urban rail viaduct based on ray-tracing [C]//4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE, 2022: 24–28. DOI: 10.1109/ISRITI54043.2021.9702771
DOI URL |
14 | MOLISCH A F. Wireless communications [M]. Hoboken, USA: John Wiley & Sons, 2005 |
15 |
WEN Y H, MA Y S, ZHANG X Y, et al. Channel fading statistics in high-speed mobile environment [C]//IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2012: 1209–1212. DOI: 10.1109/APWC.2012.6324963
DOI URL |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||