ZTE Communications ›› 2021, Vol. 19 ›› Issue (3): 81-87.doi: 10.12142/ZTECOM.202103010
• Research Paper • Previous Articles Next Articles
SATO Kenji1,2(), ZHANG Xiaobo1
Received:
2021-01-01
Online:
2021-09-25
Published:
2021-10-11
About author:
SATO Kenji (SATO Kenji, ZHANG Xiaobo. Semiconductor Optical Amplifier and Gain Chip Used in Wavelength Tunable Lasers[J]. ZTE Communications, 2021, 19(3): 81-87.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
BUUS J, MURPHY E J. Tunable lasers in optical networks [J]. Journal of lightwave technology, 2006, 24(1): 5–11. DOI: 10.1109/JLT.2005.859839
doi: 10.1109/JLT.2005.859839 |
2 |
TSUKAMOTO S, LY‑GAGNON D S, KATOH K, et al. Coherent demodulation of 40‑Gbit/s polarization‑multiplexed QPSK signals with 16‑GHz spacing after 200‑km transmission [C]//Optical Fiber Communication Conference (OFC). Anaheim, USA: IEEE, 2005. DOI: 10.1109/OFC.2005.193207
doi: 10.1109/OFC.2005.193207 |
3 | ZHOU X, YU J J. Multi‑level, multi‑dimensional coding for high‑speed and high‑spectral‑efficiency optical transmission [J]. Journal of lightwave technology, 2009, 27(16): 3641–3653 |
4 |
COLDREN L A. Monolithic tunable diode lasers [J]. IEEE journal of selected topics in quantum electronics, 2000, 6(6): 988–999. DOI: 10.1109/2944.902147
doi: 10.1109/2944.902147 |
5 | CHAPMAN W B, DAIBER A, MCDONALD M, et al. Temperature tuned external cavity diode laser with micromachined silicon etalons [C]//Conference on Lasers and Electro‑Optics (CLEO). San Francisco, USA: OSA, 2004: paper CWC2 |
6 | SATO K, MIZUTANI K, SUDO S, et al. Wideband external cavity wavelength‑tunable laser utilizing a liquid‑crystal‑based mirror and an intracavity etalon [J]. Journal of lightwave technology, 2007, 25(8): 2226–2232 |
7 |
TAKAHASHI M, DEKI Y, TAKAESU S, et al. A stable widely tunable laser using a silica‑waveguide triple‑ring resonator [C]//Optical Fiber Communication Conference, (OFC). Anaheim, USA: IEEE, 2005. DOI: 10.1109/OFC.2005.193197
doi: 10.1109/OFC.2005.193197 |
8 |
LEI C M, FENG H L, MESSADDEQ Y, et al. Investigation of C‑band pumping for extended L‑band EDFAs [J]. Journal of the optical society of America B, 2020, 37(8): 2345–2352. DOI: 10.1364/josab.392291
doi: 10.1364/josab.392291 |
9 |
DE BARROS M, ROSOLEM J, ROCHA M, et al. Transmission in the L+ band for metropolitan applications [C]//Optical Fiber Communications Conference (OFC), 2003. Atlanta, USA: IEEE, 2003: 93–94. DOI: 10.1109/OFC.2003.1247513
doi: 10.1109/OFC.2003.1247513 |
10 |
BUUS J, PLASTOW R. A theoretical and experimental investigation of Fabry‑Perot semiconductor laser amplifiers [J]. IEEE journal of quantum electronics, 1985, 21(6): 614–618. DOI: 10.1109/JQE.1985.1072710
doi: 10.1109/JQE.1985.1072710 |
11 |
SIMON J. GaInAsP semiconductor laser amplifiers for single‑mode fiber communications [J]. Journal of lightwave technology, 1987, 5(9): 1286–1295. DOI: 10.1109/JLT.1987.1075637
doi: 10.1109/JLT.1987.1075637 |
12 |
EISENSTEIN G, JOPSON R M, LINKE R A, et al. Gain measurements of InGaAsP 1.5 μm optical amplifiers [J]. Electronics letters, 1985, 21(23): 1076–1077. DOI: 10.1049/el: 19850764
doi: 10.1049/el: 19850764 |
13 |
COLLAR A J, HENSHALL G D, FARRE J, et al. Low residual reflectivity of angled‑facet semiconductor laser amplifiers [J]. IEEE photonics technology letters, 1990, 2(8): 553–555. DOI: 10.1109/68.58046
doi: 10.1109/68.58046 |
14 |
MARCUSE D. Computer model of an injection laser amplifier [J]. IEEE journal of quantum electronics, 1983, 19(1): 63–73. DOI: 10.1109/JQE.1983.1071725
doi: 10.1109/JQE.1983.1071725 |
15 |
O'MAHONY M J. Semiconductor laser optical amplifiers for use in future fiber systems [J]. Journal of lightwave technology, 1988, 6(4): 531–544. DOI: 10.1109/50.4035
doi: 10.1109/50.4035 |
16 |
YOKOUCHI N, YAMANAKA N, IWAI N, et al. Tensile‑strained GaInAsP‑InP quantum‑well lasers emitting at 1.3 um [J]. IEEE journal of quantum electronics, 1996, 32(12): 2148–2155. DOI: 10.1109/3.544762
doi: 10.1109/3.544762 |
17 |
MAGARI K, OKAMOTO M, YASAKA H, et al. Polarization insensitive traveling wave type amplifier using strained multiple quantum well structure [J]. IEEE photonics technology letters, 1990, 2(8): 556–558. DOI: 10.1109/68.58047
doi: 10.1109/68.58047 |
18 |
WHITEAWAY J E A, THOMPSON G H B, GREENE P D, et al. Logarithmic gain/current‑density characteristic of InGaAs/InGaAlAs/InP multi‑quantum well separate confinement heterostructure lasers [J]. Electronics letters, 1991, 27(4): 340–342. DOI: 10.1049/el: 19910215
doi: 10.1049/el: 19910215 |
19 |
KOBAYASHI N, SATO K, NAMIWAKA M, et al. Silicon photonic hybrid ring‑filter external cavity wavelength tunable lasers [J]. Journal of lightwave technology, 2015, 33(6): 1241–1246. DOI: 10.1109/JLT.2014.2385106
doi: 10.1109/JLT.2014.2385106 |
20 |
OOHASHI H, SHIBATA Y, ISHII H, et al. 46.9‑nm wavelength‑selectable arrayed DFB lasers with integrated MMI coupler and SOA [C]//13th International Conference on Indium Phosphide and Related Materials (IPRM). Nara, Japan: IEEE, 2001: 575‑578. DOI: 10.1109/ICIPRM.2001.929216
doi: 10.1109/ICIPRM.2001.929216 |
21 |
KIMOTO T, KUROBE T, MURANUSHI K, et al. Reduction of spectral‑linewidth in high power SOA integrated wavelength selectable laser [C]//19th International Semiconductor Laser Conference. Matsue, Japan: IEEE, 2004: 149–150. DOI: 10.1109/ISLC.2004.1382801
doi: 10.1109/ISLC.2004.1382801 |
22 |
BOUDA M, MATSUDA M, MORITO K, et al. Compact high‑power wavelength selectable lasers for WDM applications [C]//Optical Fiber Communication Conference (OFC). Baltimore, USA: IEEE, 2000: 178–180. DOI: 10.1109/OFC.2000.868407
doi: 10.1109/OFC.2000.868407 |
23 |
YASHIKI K, SATO K, MORIMOTO T, et al. Wavelength‑selectable light sources fabricated using advanced microarray‑selective epitaxy [J]. IEEE photonics technology letters, 2004, 16(7): 1619–1621. DOI: 10.1109/LPT.2004.828544
doi: 10.1109/LPT.2004.828544 |
24 |
ZOU S, YOFFE G W, LU B, et al. 100 mW phase‑shifted 1 550 nm BH DFB arrays with a 10‑micron pitch [C]//Optical Fiber Communication Conference (OFC). Anaheim, USA: IEEE, 2005. DOI: 10.1109/OFC.2005.192825
doi: 10.1109/OFC.2005.192825 |
25 |
JAYARAMAN V, CHUANG Z M, COLDREN L A. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings [J]. IEEE journal of quantum electronics, 1993, 29(6): 1824–1834. DOI: 10.1109/3.234440
doi: 10.1109/3.234440 |
26 | ROBBINS D J, BUSICO G, PONNAMPALAM L, et al. A high power, broadband tunable laser module based on a DS‑DBR laser with integrated SOA [C]// Optical Fiber Communication Conference (OFC). Los Angeles, USA, 2004. |
27 |
YOSHINAGA H, YANAGISAWA M, KANEKO T, et al. Single‑stripe tunable laser with chirped sampled gratings fabricated by nanoimprint lithography [J]. Japanese journal of applied physics, 2014, 53(8S2): 08MB05. DOI: 10.7567/jjap.53.08mb05
doi: 10.7567/jjap.53.08mb05 |
28 |
COLDREN L A, CORZINE S W, MAŠANOVIĆ M L. Diode lasers and photonic integrated circuits [M]. Hoboken, USA: John Wiley & Sons, Inc., 2012. DOI: 10.1002/9781118148167
doi: 10.1002/9781118148167 |
29 |
GAO Y K, LO J C, LEE S, et al. High‑power, narrow‑linewidth, miniaturized silicon photonic tunable laser with accurate frequency control [J]. Journal of lightwave technology, 2020, 38(2): 265–271. DOI: 10.1109/JLT.2019.2940589
doi: 10.1109/JLT.2019.2940589 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||