ZTE Communications ›› 2021, Vol. 19 ›› Issue (3): 73-80.DOI: 10.12142/ZTECOM.202103009
• Research Paper • Previous Articles Next Articles
Received:
2021-04-17
Online:
2021-09-25
Published:
2021-10-11
About author:
YANG Han received the B.Eng. degree from Sun Yat-Sen University, China in 2019. He is currently pursuing his master’s degree at Sun Yat-Sen University. His research interests include edge computing and edge intelligence.|CHEN Xu (Supported by:
YANG Han, CHEN Xu, ZHOU Zhi. Super Resolution Sensing Technique for Distributed Resource Monitoring on Edge Clouds[J]. ZTE Communications, 2021, 19(3): 73-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202103009
fl | fh | SRF | Linear Interpolation (MAPE/PSNR/DTW) | Cubic Interpolation (MAPE/PSNR/DTW) | CS (MAPE/PSNR/DTW) | SRS (MAPE/PSNR/DTW) |
---|---|---|---|---|---|---|
1/20 | 1/10 | 2 | 4.78%/33.58/334.62 | 4.66%/33.73/317.26 | 11.30%/27.04/678.56 | 4.15%/34.78/296.52 |
1/50 | 1/10 | 5 | 7.23%/29.89/493.52 | 7.16%/29.86/472.10 | 23.03%/20.93/1 499.84 | 6.32%/30.95/442.34 |
1/100 | 1/10 | 10 | 8.99%/27.99/623.26 | 9.10%/27.89/600.04 | 30.85%/19.06/2 157.87 | 8.09%/28.72/548.06 |
1/200 | 1/10 | 20 | 11.93%/26.02/781.07 | 11.02%/26.52/757.24 | 36.45%/18.42/2 649.60 | 9.85%/27.03/696.51 |
1/400 | 1/10 | 40 | 13.16%/24.30/936.30 | 12.62%/24.35/918.10 | 106.59%/15.34/8 549.43 | 11.09%/26.01/817.40 |
1/100 | 1/50 | 2 | 5.33%/32.66/78.78 | 5.33%/32.69/74.23 | 14.90%/24.85/191.03 | 4.84%/33.91/70.99 |
1/100 | 1/20 | 5 | 7.72%/29.34/264.58 | 7.81%/29.92/252.15 | 24.42%/20.77/819.10 | 6.98%/30.29/241.26 |
1/200 | 1/20 | 10 | 9.78%/27.41/347.59 | 9.99%/27.19/334.94 | 31.70%/16.64/1 159.87 | 8.94%/28.03/318.82 |
1/400 | 1/20 | 20 | 11.23%/26.38/428.85 | 11.13%/26.03/419.25 | 82.49%/16.16/3 458.83 | 10.26%/26.79/379.41 |
Table 1 Comparison results attained by SRS and other methods
fl | fh | SRF | Linear Interpolation (MAPE/PSNR/DTW) | Cubic Interpolation (MAPE/PSNR/DTW) | CS (MAPE/PSNR/DTW) | SRS (MAPE/PSNR/DTW) |
---|---|---|---|---|---|---|
1/20 | 1/10 | 2 | 4.78%/33.58/334.62 | 4.66%/33.73/317.26 | 11.30%/27.04/678.56 | 4.15%/34.78/296.52 |
1/50 | 1/10 | 5 | 7.23%/29.89/493.52 | 7.16%/29.86/472.10 | 23.03%/20.93/1 499.84 | 6.32%/30.95/442.34 |
1/100 | 1/10 | 10 | 8.99%/27.99/623.26 | 9.10%/27.89/600.04 | 30.85%/19.06/2 157.87 | 8.09%/28.72/548.06 |
1/200 | 1/10 | 20 | 11.93%/26.02/781.07 | 11.02%/26.52/757.24 | 36.45%/18.42/2 649.60 | 9.85%/27.03/696.51 |
1/400 | 1/10 | 40 | 13.16%/24.30/936.30 | 12.62%/24.35/918.10 | 106.59%/15.34/8 549.43 | 11.09%/26.01/817.40 |
1/100 | 1/50 | 2 | 5.33%/32.66/78.78 | 5.33%/32.69/74.23 | 14.90%/24.85/191.03 | 4.84%/33.91/70.99 |
1/100 | 1/20 | 5 | 7.72%/29.34/264.58 | 7.81%/29.92/252.15 | 24.42%/20.77/819.10 | 6.98%/30.29/241.26 |
1/200 | 1/20 | 10 | 9.78%/27.41/347.59 | 9.99%/27.19/334.94 | 31.70%/16.64/1 159.87 | 8.94%/28.03/318.82 |
1/400 | 1/20 | 20 | 11.23%/26.38/428.85 | 11.13%/26.03/419.25 | 82.49%/16.16/3 458.83 | 10.26%/26.79/379.41 |
1 |
ZWOLENSKI M, WEATHERILL L. The digital universe rich data and the increasing value of the Internet of Things [J]. Australian journal of telecommunications and the digital economy, 2014, 2(3): 47. DOI: 10.7790/ajtde.v2n3.47
DOI |
2 | SHI W S, ZHANG X Z, WANG Y F, et al. Edge computing: state‑of‑the‑art and future directions [J]. Journal of computer research and development, 2019, 56(1): 69–89 |
3 | FINNEGAN M. Boeing 787s to create half a terabyte of data per flight, says virgin atlantic [J]. Computerworld UK, 2013, 6: 1–2 |
4 |
GREENBERG A, HAMILTON J, MALTZ D A, et al. The cost of a cloud: research problems in data center networks [J]. ACM SIGCOMM computer communication review, 2008, 39(1): 68–73. DOI: 10.1145/1496091.1496103
DOI |
5 |
DONOHO D L. Compressed sensing [J]. IEEE transactions on information theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582
DOI |
6 |
CHANDRASEKARAN V, SANGHAVI S, PARRILO P A, et al. Rank‑sparsity incoherence for matrix decomposition [J]. SIAM journal on optimization, 2011, 21(2): 572–596. DOI: 10.1137/090761793
DOI |
7 |
LERTRATTANAPANICH S, BOSE N K. High resolution image formation from low resolution frames using Delaunay triangulation [J]. IEEE transactions on image processing, 2002, 11(12): 1427–1441. DOI: 10.1109/TIP.2002.806234
DOI |
8 |
TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images [C]//Sixth International Conference on Computer Vision.Mumbai, India: IEEE, 1998: 839–846. DOI: 10.1109/ICCV.1998.710815
DOI |
9 |
LI X, ORCHARD M T. New edge‑directed interpolation [J]. IEEE transactions on image processing, 2001, 10(10): 1521–1527. DOI: 10.1109/83.951537
DOI |
10 |
BELAHMIDI A, GUICHARD F. A partial differential equation approach to image zoom [C]//International Conference on Image Processing, ICIP '04. Singapore, Singapore: IEEE, 2004: 649–652. DOI: 10.1109/ICIP.2004.1418838
DOI |
11 |
ZWART C M, FRAKES D H. Segment adaptive gradient angle interpolation [J]. IEEE transactions on image processing, 2013, 22(8): 2960–2969. DOI: 10.1109/TIP.2012.2228493
DOI |
12 | STARK H, OSKOUI P. High‑resolution image recovery from image‑plane arrays, using convex projections [J]. Josa A, 1989, 6(11): 1715–1726 |
13 |
SCHULTZ R R, STEVENSON R L. Improved definition video frame enhancement [C]//International Conference on Acoustics, Speech, and Signal Processing. Detroit, USA: IEEE, 1995: 2169–2172. DOI: 10.1109/ICASSP.1995.479905
DOI |
14 |
SCHULTZ R R, STEVENSON R L. Video resolution enhancement [C]//Proc SPIE 2421, Image and Video Processing III. San Jose, United States: SPIE, 1995, 2421: 23–34. DOI: 10.1117/12.205488
DOI |
15 |
LIU C, SUN D Q. On Bayesian adaptive video super resolution [J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(2): 346–360. DOI: 10.1109/TPAMI.2013.127
DOI |
16 |
IRANI M, PELEG S. Improving resolution by image registration [J]. CVGIP: graphical models and image processing, 1991, 53(3): 231–239. DOI: 10.1016/1049-9652(91)90045-L
DOI |
17 |
ADAMCZYK K, WALCZAK A. Digital images interpolation with wavelet edge extractors [C]//3rd International Conference on Human System Interaction. Rzeszow, Poland: IEEE, 2010: 399–405. DOI: 10.1109/HSI.2010.5514539
DOI |
18 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. DOI: 10.1145/3065386
DOI |
19 |
DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super‑resolution [C]//13th European Conference on Computer Vision (ECCV). Zurich, Switzerland, 2014: 184–199. DOI: 10.1007/978-3-319-10593-2_13
DOI |
20 |
DONG C, LOY C C, TANG X O. Accelerating the super‑resolution convolutional neural network [C]//14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 391–407. DOI: 10.1007/978-3-319-46475-6_25
DOI |
21 |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real‑time single image and video super‑resolution using an efficient sub‑pixel convolutional neural network [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 1874–1883. DOI: 10.1109/CVPR.2016.207
DOI |
22 |
KIM J, LEE J K, LEE K M. Deeply‑recursive convolutional network for image super‑resolution [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 1637–1645. DOI: 10.1109/CVPR.2016.181
DOI |
23 |
KIM J, LEE J K, LEE K M. Accurate image super‑resolution using very deep convolutional networks [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 1646–1654. DOI: 10.1109/CVPR.2016.182
DOI |
24 |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo‑realistic single image super‑resolution using a generative adversarial network [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017: 105–114. DOI: 10.1109/CVPR.2017.19
DOI |
25 | MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. (2014‑11‑06)[2020‑12‑21]. |
26 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super‑resolution [C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017: 1132–1140. DOI: 10.1109/CVPRW.2017.151
DOI |
27 |
SALVADOR S, CHAN P. Toward accurate dynamic time warping in linear time and space [J]. Intelligent data analysis, 2007, 11(5): 561–580. DOI: 10.3233/ida-2007-11508
DOI |
28 |
NEEDELL D, TROPP J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and computational harmonic analysis, 2009, 26(3): 301–321. DOI: 10.1016/j.acha.2008.07.002
DOI |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||