ZTE Communications ›› 2020, Vol. 18 ›› Issue (1): 73-82.DOI: 10.12142/ZTECOM.202001011
• Review • Previous Articles
GAO Xiang, MUHAMMAD Saqlain, CAO Xiaoxiao, WANG Shiwei, LIU Kexin, ZHANG Hangkai, YU Xianbin()
Received:
2019-12-18
Online:
2020-03-25
Published:
2020-06-15
About author:
GAO Xiang received the B.S. degree from Zhejiang Sci-Tec University, China in 2017. He is currently working towards the M.S. degree at the School of Electronic science and technology, Zhejiang University. His current research interest is terahertz imaging.|Saqlain MUHAMMAD received the M.S. degree in electronics communication engineering from the University of Nottingham, Malaysia Campus in 2013. He has been a Ph.D. student at the College of Information Science and Electronic Engineering, Zhejiang University since 2017. His research interests are terahertz communication and channel impairments.|CAO Xiaoxiao received the B.S. degree from Anhui University, China in 2017. She is currently working towards the M.S. degree at the School of Electronic science and technology, Zhejiang University. Her current research interest is terahertz imaging.|WANG Shiwei received the B.S. degree in electronics science and technology from Harbin Institute of Technology, China in 2016. He is currently working towards the Ph.D. degree in electronics science and technology at Zhejiang University. His current research interests are in the areas of terahertz/microwave photonics and terahertz communications.|LIU Kexin received the B.S. degree from Sun Yat-sen University, China in 2016. She received the M.S. degree from the College of Information Science and Electronic Engineering, Zhejiang University in 2019. Her research interest is terahertz communications.|ZHANG Hangkai received the B.S. and M.S. degrees from the College of Information Science and Electronic Engineering from Zhejiang University, China in 2018. His research interest is terahertz/microwave photonics.|YU Xianbin (Supported by:
GAO Xiang, MUHAMMAD Saqlain, CAO Xiaoxiao, WANG Shiwei, LIU Kexin, ZHANG Hangkai, YU Xianbin. Towards Converged Millimeter-Wave/TerahertzWireless Communication and Radar Sensing[J]. ZTE Communications, 2020, 18(1): 73-82.
Method Type | System Type | Domain | Radar Mode | Communication Mode | Year | Reference | |
---|---|---|---|---|---|---|---|
Electronics | Joint Waveform | Single Carrier | Frequency | Pulse (DSSS) | ASK | 2002 | [ |
Code | Pulse (DSSS) | MSK | 2016 | [ | |||
Pulse | DQPSK | 2007 | [ | ||||
Pulse (DSSS) | PPM | 2010 | [ | ||||
Pulse (CSS) | QPSK | 2011 | [ | ||||
Multiple Carrier | --- | Pulse (OFDM) | PSK | 2017 | [ | ||
Pulse | CPM | 2017 | [ | ||||
Pulse (OFDM) | OFDM | 2009 | [ | ||||
CW (SFCW) | DPSK | 2015 | [ | ||||
Time-Domain Duplex | --- | Time | Trapezoidal FMCW | BPSK | 2011 | [ | |
FMCW | FSK | 2008 | [ | ||||
Trapezoidal FMCW | PSK | 2013 | [ | ||||
Photonics | --- | Multiple Carrier | --- | Pulse (OFDM) | 16-QAM | 2017 | [ |
Summary of fusion technology
Method Type | System Type | Domain | Radar Mode | Communication Mode | Year | Reference | |
---|---|---|---|---|---|---|---|
Electronics | Joint Waveform | Single Carrier | Frequency | Pulse (DSSS) | ASK | 2002 | [ |
Code | Pulse (DSSS) | MSK | 2016 | [ | |||
Pulse | DQPSK | 2007 | [ | ||||
Pulse (DSSS) | PPM | 2010 | [ | ||||
Pulse (CSS) | QPSK | 2011 | [ | ||||
Multiple Carrier | --- | Pulse (OFDM) | PSK | 2017 | [ | ||
Pulse | CPM | 2017 | [ | ||||
Pulse (OFDM) | OFDM | 2009 | [ | ||||
CW (SFCW) | DPSK | 2015 | [ | ||||
Time-Domain Duplex | --- | Time | Trapezoidal FMCW | BPSK | 2011 | [ | |
FMCW | FSK | 2008 | [ | ||||
Trapezoidal FMCW | PSK | 2013 | [ | ||||
Photonics | --- | Multiple Carrier | --- | Pulse (OFDM) | 16-QAM | 2017 | [ |
Figure 2 A joint radar and communication system based on Orthogonal Frequency-Division Multiplexing (OFDM) Multiple Input and Multiple Output (MIMO) technique [60].
References | Carrier Frequency/GHz | Communication Mode | Radar Mode | ||||||
---|---|---|---|---|---|---|---|---|---|
Modulation Format | Range/m | Data Rate/(Mbit/s) | BER | Signal Type | Bandwidth/MHz | Range/m | Range Resolution/cm | ||
[ | 60 | PPM | 10 | 200 | <1×10-6 | Pulse (single) | 3 000 | 3 | 12.4 |
[ | 24.125 | BPSK | 200 | 50 | <1×10-6 | TFMCW | 100 | 70 | 165 |
[ | 7.0–8.0 | OFDM | 5 | 57 | <5×10-2 | Pulse (OFDM) | 1 000 | 5 | 30 |
[ | 25–35 | 16-QAM | 10 | 14 500 | <1×10-3 | Pulse (OFDM, Photonics) | 10 000 | 5 | 5 |
Performance comparison of the demonstrated joint systems
References | Carrier Frequency/GHz | Communication Mode | Radar Mode | ||||||
---|---|---|---|---|---|---|---|---|---|
Modulation Format | Range/m | Data Rate/(Mbit/s) | BER | Signal Type | Bandwidth/MHz | Range/m | Range Resolution/cm | ||
[ | 60 | PPM | 10 | 200 | <1×10-6 | Pulse (single) | 3 000 | 3 | 12.4 |
[ | 24.125 | BPSK | 200 | 50 | <1×10-6 | TFMCW | 100 | 70 | 165 |
[ | 7.0–8.0 | OFDM | 5 | 57 | <5×10-2 | Pulse (OFDM) | 1 000 | 5 | 30 |
[ | 25–35 | 16-QAM | 10 | 14 500 | <1×10-3 | Pulse (OFDM, Photonics) | 10 000 | 5 | 5 |
1 |
ABDULATIF S, KLEINER B, AZIZ F, et al. Stairs Detection for Enhancing Wheelchair Capabilities Based on Radar Sensors [C]//IEEE 6th Global Conference on Consumer Electronics (GCCE). Nagoya, Japan, 2017: 1–4.DOI:10.1109/gcce.2017.8229270
DOI |
2 |
ZHANG J J, TAO J K, SHI Z G. Doppler⁃Radar Based Hand Gesture Recognition System Using Convolutional Neural Networks [M]//Lecture Notes in Electrical Engineering. Singapore, Singapore: Springer, 2018: 1096–1113.DOI: 10.1007/978⁃981⁃10⁃6571⁃2_132
DOI |
3 |
TOLBERT C, STRAITON A, BRITT C. Phantom Radar Targets at Millimeter Radio Wavelengths [J]. IRE Transactions on Antennas and Propagation, 1958, 6(4): 380–384. DOI:10.1109/tap.1958.1144609
DOI |
4 |
OWDA A Y, SALMON N, ANDREWS D, et al. Active Millimeter⁃Wave Radar for Sensing and Imaging through Dressing Materials [C]//IEEE SENSORS. Glasgow, UK, 2017. DOI: 10.1109/icsens.2017.8234228
DOI |
5 |
GALATI G, PIRACCI E G, FERRI M. ResolutionHigh.Millimeter⁃Wave Radar Applications to Airport Safety [C]//8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). Odessa, Ukraine, 2016: 21–26.DOI: 10.1109/uwbusis.2016.7724144
DOI |
6 |
CAGER R, LAFLAME D, PARODE L. Orbiter Ku⁃Band Integrated Radar and Communications Subsystem [J]. IEEE Transactions on Communications, 1978, 26(11): 1604–1619. DOI: 10.1109/tcom.1978.1094004
DOI |
7 | BOCQUET M, LOYEZ C, LETHIEN C, et al. A Multifunctional 60⁃GHz System for Automotive Applications with Communication and Positioning Abilities Based on Time Reversal [C]//7th European Radar Conference. Paris, France, 2010: 61–64 |
8 |
UMEZAWA T, JITSUNO K, KANNO A, et al. 30⁃GHz OFDM Radar and Wireless Communication Experiment Using Radio over Fiber Technology [C]//Progress in Electromagnetics Research Symposium―Spring (PIERS). St Petersburg, Russia, 2017: 22–25.DOI: 10.1109/piers.2017.8262288
DOI |
9 |
HAN L, WU K. 24⁃GHz Integrated Radio and Radar System Capable of Time⁃Agile Wireless Communication and Sensing [J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 619–631. DOI:10.1109/tmtt.2011.2179552
DOI |
10 |
HU L, DU Z C, XUE G R. Radar⁃Communication Integration Based on OFDM Signal [C]//IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Guilin, China, 2014: 442–445.DOI: 10.1109/icspcc.2014.6986232
DOI |
11 |
WANG W Q, ZHENG Z, ZHANG S. OFDM Chirp Waveform Diversity for Co⁃Designed Radar⁃Communication System [C]//18th International Radar Symposium (IRS). Prague, Czech Republic, 2017. DOI: 10.23919/IRS.2017.8008139
DOI |
12 |
HUANG R Q, ZHAO X L, ZHANG Q, et al. Spectrum Extension Research of Radar⁃Communication Integrated Waveform [C]//2nd IEEE International Conference on Computer and Communications (ICCC). Chengdu, China, 2016: 1804⁃1808. DOI: 10.1109/compcomm.2016.7925013
DOI |
13 |
ZHANG Y, LI Q Y, HUANG L, et al. Waveform Design for Joint Radar⁃Communication System with Multi⁃User Based on MIMO Radar [C]//IEEE Radar Conference (RadarConf). Seattle, USA, 2017: 415–418. DOI: 10.1109/radar.2017.7944238
DOI |
14 |
HU F, CUI G L, YE W, et al. Integrated Radar and Communication System Based on Stepped Frequency Continuous Waveform [C]//IEEE Radar Conference (RadarCon). Arlington, USA, 2015: 1804–1807.DOI: 10.1109/radar.2015.7131155
DOI |
15 |
MOGHADDASI J, WU K. Improved Joint Radar⁃Radio (RadCom) Transceiver for Future Intelligent Transportation Platforms and Highly Mobile High⁃Speed Communication Systems [C]//IEEE International Wireless Symposium (IWS). Beijing, China, 2013. DOI: 10.1109/ieee⁃iws.2013.6616796
DOI |
16 |
XIE Y N, TAO R, WANG T. Method of Waveform Design for Radar and Communication Integrated System Based on CSS [C]//First International Conference on Instrumentation, Measurement, Computer, Communication and Control. Beijing, China, 2011: 737–739. DOI: 10.1109/imccc.2011.187
DOI |
17 |
WINKLER V, DETLEFSEN J. Automotive 24 GHz Pulse Radar Extended by a DQPSK Communication Channel [C]//European Radar Conference. Munich, Germany, 2007: 138–141.DOI: 10.1109/eurad.2007.4404956
DOI |
18 |
STELZER A, JAHN M, SCHEIBLHOFER S. Precise Distance Measurement with Cooperative FMCW Radar Units [C]//IEEE Radio and Wireless Symposium. Orlando, USA, 2008: 771–774. DOI: 10.1109/rws.2008.4463606
DOI |
19 |
SADDIK G N, SINGH R S, BROWN E R. Ultra⁃Wideband Multifunctional Communications/Radar System [J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. DOI: 10.1109/tmtt.2007.900343
DOI |
20 |
KONNO K, KOSHIKAWA S. Millimeter⁃Wave Dual Mode Radar for Headway Control in IVHS [C]//IEEE MTT⁃S International Microwave Symposium Digest. Denver, USA, 1997: 1261–1264.DOI:10.1109/mwsym.1997.596556
DOI |
21 |
Han L, Wu K. Radar and Radio Data Fusion Platform for Future Intelligent Transportation System [C]//7th European Radar Conference. Paris, France, 2010: 65–68.DOI:10.1109/ACCESS.2016.2530979
DOI |
22 |
GARMATYUK D, SCHUERGER J, KAUFFMAN K. Multifunctional Software⁃Defined Radar Sensor and Data Communication System [J]. IEEE Sensors Journal, 2011, 11(1): 99–106. DOI:10.1109/jsen.2010.2052100
DOI |
23 |
MIZUI K, UCHIDA M, NAKAGAWA M, et al. Vehicle⁃to⁃Vehicle Communication and Ranging System Using Spread Spectrum Technique [C]//Vehicular Technology Conference. Secaucus, USA, 1993: 2–5.DOI: 10.1109/VETEC.1993.507206
DOI |
24 |
LINDENMEIER S, BOEHM K, LUY J F. A Wireless Data Link for Mobile Applications [J]. IEEE Microwave and Wireless Components Letters, 2003, 13(8): 326–328. DOI: 10.1109/lmwc.2003.815706
DOI |
25 |
XU S, CHEN Y, ZHANG P. Integrated Radar and Communication Based on DS⁃UWB [C]//3rd International Conference on Ultrawideband and Ultrashort Impulse Signals. Sevastopol, Ukraine, 2006: 142–144.DOI: 10.1109/uwbus.2006.307182
DOI |
26 |
LIN Z Y, WEI P. Pulse Amplitude Modulation Direct Sequence Ultra Wideband Sharing Signal for Communication and Radar Systems [C]//7th International Symposium on Antennas, Propagation & EM Theory. Guilin, China, 2006. DOI: 10.1109/isape.2006.353326
DOI |
27 |
FRANKEN G E A, NIKOOKAR H, GENDEREN P. Doppler Tolerance of OFDM⁃Coded Radar Signals [C]//European Radar Conference. Manchester, UK, 2006: 108–111.DOI: 10.1109/eurad.2006.280285
DOI |
28 |
STURM C, ZWICK T, WIESBECK W. An OFDM System Concept for Joint Radar and Communications Operations [C]//VTC Spring 2009―IEEE 69th Vehicular Technology Conference. Barcelona, Spain, 2009. DOI: 10.1109/vetecs.2009.5073387
DOI |
29 |
TIGREK R F, DE HEIJ W J A, GENDEREN PV. Multi⁃Carrier Radar Waveform Schemes for Range and Doppler Processing [C]//IEEE Radar Conference. Pasadena, USA, 2009: 2–6. DOI: 10.1109/radar.2009.4976986
DOI |
30 |
LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM Waveforms for Frequency Agility and Opportunities for Doppler Processing in Radar [C]//IEEE Radar Conference. Rome, Italy, 2008. DOI: 10.1109/radar.2008.4720798
DOI |
31 | TIGREK R F, DE HEIJ W J A, GENDEREN PV. Solving Doppler Ambiguity by Doppler Sensitive Pulse Compression Using Multi⁃Carrier Waveform [C]//5th European Radar Conference. Amsterdam, Netherlands, 2008: 72–75 |
32 | GENDEREN V. Recent Advances in Waveforms for Radar, Including Those with Communication Capability [C]//European Radar Conference. Rome, Italy, 2009: 318–325 |
33 |
GENDEREN V. A Communication Waveform for Radar [C]//8th International Conference on Communications. Bucharest, Romania, 2010: 289–292.DOI:10.1109/iccomm.2010.5509110
DOI |
34 |
BERGER C R, DEMISSIE B, HECKENBACH J, et al. Signal Processing for Passive Radar Using OFDM Waveforms [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 226–238. DOI: 10.1109/jstsp.2009.2038977
DOI |
35 |
STURM C, PANCERA E, ZWICK T, et al. A Novel Approach to OFDM Radar Processing [C]//IEEE Radar Conference. Pasadena, USA, 2009: 9–12.DOI:10.1109/radar.2009.4977002
DOI |
36 | STURM C, BRAUN M, ZWICK T, et al. A Multiple Target Doppler Estimation Algorithm for OFDM Based Intelligent Radar Systems [C]//7th European Radar Conference. Paris, France, 2010: 73–76 |
37 |
BRAUN M, STURM C, JONDRAL F K. Maximum Likelihood Speed and Distance Estimation for OFDM Radar [C]//IEEE Radar Conference. Arlington, USA, 2010: 256–261.DOI:10.1109/radar.2010.5494616
DOI |
38 |
BRAUN M, STURM C, JONDRAL F K. On the Single⁃Target Accuracy of OFDM Radar Algorithms [C]//IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications. Toronto, Canada, 2011: 794–798.DOI: 10.1109/pimrc.2011.6140075
DOI |
39 |
YATTOUN I, LABIA T, PEDEN A, et al. A Millimetre Communication System for IVC2007 [C]//7th International Conference on ITS Telecommunications. Sophia Antipolis, France, 2007: 281–286.DOI: 10.1109/ITST.2007.4295879
DOI |
40 |
ZHANG H, LI L, WU K. 24GHz Software⁃Defined Radar System for Automotive Applications [C]//European Conference on Wireless Technologies. Munich, Germany, 2007: 138–141.DOI: 10.1109/ecwt.2007.4403965
DOI |
41 | YU J G, GONG M J, ZHANG M. RoF Communication Technology and Its Application Prospect [J]. ZTE Communcations, 2009, 7(3): 12–15 |
42 |
JUNG D H, PARK S O. Ku⁃Band Car⁃Borne FMCW Stripmap Synthetic Aperture Radar [C]//International Symposium on Antennas and Propagation (ISAP). Phuket, Thailand, 2017. DOI: 10.1109/isanp.2017.8228895
DOI |
43 |
ALIZADEH P, PARINI C, RAJAB K Z. A Low⁃Cost FMCW Radar Front End for Imaging at 24 GHz to 33 GHz [C]//Loughborough Antennas & Propagation Conference (LAPC). Loughborough, United Kingdom, 2015: 24–27.DOI: 10.1109/lapc.2015.7366007
DOI |
44 |
CHENG P, WANG Z, XIN Q, et al. Imaging of FMCW MIMO Radar with Interleaved OFDM Waveform [C]//12th International Conference on Signal Processing. Hangzhou, China, 2014: 1944–1948.DOI: 10.1109/ICOSP.2014.7015332
DOI |
45 |
GANIS A, NAVARRO E M, SCHOENLINNER B, et al. A PorTable 3⁃D Imaging FMCW MIMO Radar Demonstrator with a 24× 24 Antenna Array for Medium⁃Range Applications [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 298–312. DOI: 10.1109/tgrs.2017.2746739
DOI |
46 |
SCHEIBLHOFER W, FEGER R, HADERER A, et al. Simultaneous Localization and Data⁃interrogation Using a 24⁃GHz Modulated⁃Reflector FMCW Radar System [C]//IEEE MTT⁃S International Microwave Symposium (IMS). Honololu, USA, 2017: 67–70.DOI: 10.1109/mwsym.2017.8058669
DOI |
47 |
PENG Z Y, RAN L X, LI C Z. A K⁃Band Portable FMCW Radar with Beamforming Array for Short⁃Range Localization and Vital⁃Doppler Targets Discrimination [J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3443–3452. DOI: 10.1109/tmtt.2017.2662680
DOI |
48 |
MASKELL D L, WOODS G S. A Frequency Modulated Envelope Delay FSCW Radar for Multiple⁃Target Applications [J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(4): 710–715. DOI: 10.1109/19.863911
DOI |
49 |
MASKELL D L, WOODS G S. A Multiple⁃Target Ranging System Using an FM Modulated FSCW Radar [C]//Microwave Conference. Munich, Germany, 1999: 888–891.DOI: 10.1109/APMC.1999.833736
DOI |
50 |
NICOLAESCU I, PVAN GENDEREN, WVAN DONGEN K, et al. Stepped Frequency Continuous Wave Radar Data Preprocessing [C]//Advanced Ground Penetrating Radar. Nantes, France, 2003: 14–16.DOI: 10.1109/AGPR.2003.1207315
DOI |
51 |
ZHU D K, LIU Y X, HUO K, et al. A Novel High⁃Precision Phase⁃Derived⁃Range Method for Direct Sampling LFM Radar [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1131–1141. DOI: 10.1109/tgrs.2015.2474144
DOI |
52 |
SHI P F, GUO J M, LV P, et al. The Chirp⁃based Analog to Information Conversion in the LFM Pulse Compression Radar [C]//CIE International Conference on Radar (RADAR). Guangzhou, China, 2016. DOI:10.1109/radar.2016.8059317
DOI |
53 |
KURDZO J M, CHEONG B L, PALMER R D, et al. Optimized NLFM Pulse Compression Waveforms for High⁃Sensitivity Radar Observations [C]//International Radar Conference. Lille, France, 2014. DOI:10.1109/radar.2014.7060249
DOI |
54 |
XIONG Y, CHENG M, GAO Y, et al. Simulation Research on the Use of Phase Encoding Algorithm in Correcting Range Ambiguity for Doppler Weather Radar [C]//International Conference on Information Science and Technology. Nanjing, China, 2011: 761–765.DOI: 10.1109/icist.2011.5765356
DOI |
55 |
NUNN J, WRIGHT L J, SÖLLER C, et al. Large⁃Alphabet Time⁃Frequency Entangled Quantum Key Distribution by Means of Time⁃to⁃Frequency Conversion [J]. Optics Express, 2013, 21(13): 15959. DOI: 10.1364/oe.21.015959
DOI |
56 |
PETTERSSON M. Multifrequency Complementary Phase⁃Coded Radar Signal [J]. Radar, Sonar and Navigation, 2000, 147(6): 1–22. DOI: 10.1049/ip⁃rsn:20000734
DOI |
57 |
DONNET B, LONGSTAFF I. Combining MIMO Radar with OFDM Communications [C]//European Radar Conference. Manchester, UK, 2006. DOI: 10.1109/eurad.2006.280267
DOI |
58 |
SINGH U K, BHATIA V, MISHRA A K. Multiple Target Detection and Estimation of Range and Doppler for OFDM⁃RADAR System [C]//4th International Conference on Signal Processing and Integrated Networks (SPIN). Noida, India, 2017: 27–32.DOI: 10.1109/spin.2017.8049910
DOI |
59 | NUSS B, SIT L, FENNEL M, et al. MIMO OFDM Radar System for Drone Detection [C]//18th International Radar Symposium. Prague, Czech, 2017: 1–9. |
60 |
GARMATYUK D, KAUFFMAN K. Radar and Data Communication Fusion with UWB⁃OFDM Software⁃Defined System [C]//IEEE International Conference on Ultra⁃Wideband. Vancouver, Canada, 2009: 454–458.DOI: 10.1109/icuwb.2009.5288748
DOI |
61 |
WANG F, SHI S, SCHNEIDER G J, et al. Photonic Microwave Generation with High⁃Power Photodiodes [C]//IEEE Photonics Conference. Bellevue, UAS, 2013: 350–351.DOI: 10.1109/IPCon.2013.6656581
DOI |
62 |
LIN B, PAN B W, ZHENG Z, et al. A Review of Photonic Microwave Generation [C]//IEEE Optoelectronics Global Conference (OGC). Shenzhen, China, 2016. DOI: 10.1109/ogc.2016.7590480
DOI |
63 | ZHANG F Z, PAN S L. Microwave Photonic Signal Generation for Radar Application [J]. Electromagnetics: Applications and Student Innovation Competition (iWEM), 2016, 2: 2–4 |
64 |
GHELFI P, LAGHEZZA F, SCOTTI F, et al. A Fully Photonics⁃Based Coherent Radar System [J]. Nature, 2014, 507(7492): 341–345. DOI: 2014.10.1038/nature13078
DOI |
65 |
LI R M, LI W Z, WEN Z L, et al. Synthetic Aperture Radar Based on Photonic⁃Assisted Signal Generation and Processing [C]//Opto⁃Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC). Singapore, Singapore, 2017. DOI: 10.1109/oecc.2017.8114844
DOI |
66 |
GHELFII P, LAGHEZZA F, SCOTTI F, et al. Photonic Generation of High Fidelity RF Sources for Mobile Communications [J]. Journal of Lightwave Technology, 2017, 35(18): 3901–3908. DOI: 10.1109/JLT.2017.2707411
DOI |
67 | INOUEI T, IKEDA K, KAKUBARI Y, et al. Millimeter⁃Wave Wireless Signal Generation and Detection Using Photonic Technique for Mobile Communication Systems [C]//IEEE International Topical Meeting on Microwave Photonics (MWP). Long Beach, USA, 2016: 55–58 |
68 |
MAYER W, GRONAU A, MENZEL W, et al. A Compact 24 GHz Sensor for Beam⁃Forming and Imaging [C]//9th International Conference on Control, Automation, Robotics and Vision. Singapore, Singapore, 2006: 1–6.DOI: 10.1109/icarcv.2006.345160
DOI |
69 |
ANDRES M, FEIL P, MENZEL W. 3D⁃Scattering Center Detection of Automotive Targets Using 77 GHz UWB Radar Sensors [C]//6th European Conference on Antennas and Propagation (EUCAP). Prague, Czech, 2012: 3690–3693.DOI: 10.1109/eucap.2012.6206580
DOI |
70 |
ZHANG H K, WANG S W, JIA S, et al. Experimental Generation of Linearly Chirped 350 GHz Band Pulses with a Bandwidth beyond 60 GHz [J]. Optics Letters, 2017, 42(24): 5242. DOI: 10.1364/ol.42.005242
DOI |
71 |
YU X, CHEN Y, GALILI M, et al. The Prospects of Ultra⁃Broadband THz Wireless Communications [C]//16th International Conference on Transparent Optical Networks (ICTON 2014). Graz, Austria, 2014. DOI: 10.1109/ICTON.2014.6876675
DOI |
72 |
YU X, JIA S, HU H, et al. 160 Gbit/s Photonics Wireless Transmission in the 300⁃500 GHz Band [J]. APL Photonics, 2016, 1(8): 081301. DOI: 10.1063/1.4960136
DOI |
73 |
YU X B, ASIF R, PIELS M, et al. 400⁃GHz Wireless Transmission of 60⁃Gb/s Nyquist⁃QPSK Signals Using UTC⁃PD and Heterodyne Mixer [J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(6): 765–770. DOI: 10.1109/tthz.2016.2599077
DOI |
74 | JIA S, PANG X, OZOLINS O, et al. 0.4THz Photonic⁃Wireless Link with 106Gbit/s Single Channel Bitrate [J]. Journal of Lightwave Technology, 2018, 36(2): 610–616, 2018 |
75 |
JIA S, YU X B, HU H, et al. 120 Gb/s Multi⁃Channel THz Wireless Transmission and THz Receiver Performance Analysis [J]. IEEE Photonics Technology Letters, 2017, 29(3): 310–313. DOI: 10.1109/lpt.2016.2647280
DOI |
[1] | ZHANG Bo, WANG Yihui, FENG Yinian, YANG Yonghui, PENG Lin. A 220 GHz Frequency-Division Multiplexing Wireless Link with High Data Rate [J]. ZTE Communications, 2023, 21(3): 63-69. |
[2] | CHEN Jixin, ZHOU Peigen, YU Jiayang, LI Zekun, LI Huanbo, PENG Lin. Research Towards Terahertz Power Amplifiers in Silicon-Based Process [J]. ZTE Communications, 2023, 21(2): 88-94. |
[3] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[4] | ZHANG Zhengquan, LIU Heng, WANG Qianli, FAN Pingzhi. A Survey on Low Complexity Detectors for OTFS Systems [J]. ZTE Communications, 2021, 19(4): 3-15. |
[5] | HE Yejun, JIANG Jiachun, ZHANG Long, LI Wenting, WONG Sai-Wai, DENG Wei, CHI Baoyong. Leaky-Wave Antennas for 5G/B5G Mobile Communication Systems: A Survey [J]. ZTE Communications, 2020, 18(3): 3-11. |
[6] | GONG Jie, ZHOU Sheng. Exploiting Correlations of Energy and Information: A New Paradigm of Energy Harvesting Communications [J]. ZTE Communications, 2018, 16(1): 18-25. |
[7] | ZHANG Yueping, GUAN Ke, WANG Junjun. Multi-Gigabit Millimeter-WaveWireless Communications [J]. ZTE Communications, 2016, 14(S1): 1-1. |
[8] | Sohail Taheri, Mir Ghoraishi, XIAO Pei, CAO Aijun, GAO Yonghong. Evaluation of Preamble Based Channel Estimation for MIMO-FBMC Systems [J]. ZTE Communications, 2016, 14(4): 3-10. |
[9] | GONG Chen,TANG Xuan, WANG Xiaodong. Optical Wireless Communications [J]. ZTE Communications, 2016, 14(2): 1-1. |
[10] | Md Zoheb Hassan, Md Jahangir Hossain, Julian Cheng, Victor C M Leung. Subcarrier Intensity Modulated Optical Wireless Communications:A Survey from Communication Theory Perspective [J]. ZTE Communications, 2016, 14(2): 2-12. |
[11] | WANG Ke, Ampalavanapillai Nirmalathas, Christina Lim, SONG Tingting, LIANG Tian, Kamal Alameh, Efstratios Skafidas. Short-Range Optical Wireless Communications for Indoor and Interconnects Applications [J]. ZTE Communications, 2016, 14(2): 13-22. |
[12] | Mohamed Sufyan Islim, Harald Haas. Modulation Techniques for Li-Fi [J]. ZTE Communications, 2016, 14(2): 29-40. |
[13] | Jinhong Yuan, Yixian Yang, and Nanrun Zhou. Guest Editorial: Physical Layer Security forWireless and Quantum Communications [J]. ZTE Communications, 2013, 11(3): 1-2. |
[14] | Phil Pietraski, David Britz, Arnab Roy, Ravi Pragada, and Gregg Charlton. Millimeter Wave and Terahertz Communications: Feasibility and Challenges [J]. ZTE Communications, 2012, 10(4): 3-12. |
[15] | R. Neil Braithwaite. Crest Factor Reduction for OFDM Using Selective Subcarrier Degradation [J]. ZTE Communications, 2011, 9(4): 25-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||