ZTE Communications ›› 2024, Vol. 22 ›› Issue (1): 3-15.DOI: 10.12142/ZTECOM.202401002
• Special Topic • Previous Articles Next Articles
LIU Mengyu1, ZHANG Yang1, JIN Yasheng1, ZHI Kangda2, PAN Cunhua1()
Received:
2023-11-30
Online:
2024-03-28
Published:
2024-03-28
About author:
LIU Mengyu received his BE degree from the School of Electronic and Information Engineering, Beijing Jiaotong University, China in 2023. He is currently pursuing his ME degree with the School of Information Science and Engineering, Southeast University, China. His research interests include massive MIMO, reconfigurable intelligent surfaces (RIS), and near-field communications.Supported by:
LIU Mengyu, ZHANG Yang, JIN Yasheng, ZHI Kangda, PAN Cunhua. Towards Near-Field Communications for 6G: Challenges and Opportunities[J]. ZTE Communications, 2024, 22(1): 3-15.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202401002
1 | CHETTRI L, BERA R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems [J]. IEEE Internet of Things journal, 2020, 7(1): 16–32. DOI: 10.1109/JIOT.2019.2948888 |
2 | GARCIA M H C, MOLINA-GALAN A, BOBAN M, et al. A tutorial on 5G NR V2X communications [J]. IEEE communications surveys & tutorials, 2021, 23(3): 1972–2026. DOI: 10.1109/COMST.2021.3057017 |
3 | LI S C, LI D X, ZHAO S S. 5G Internet of Things: a survey [J]. Journal of industrial information integration, 2018, 10: 1–9. DOI: 10.1016/j.jii.2018.01.005 |
4 | SHAFI M, MOLISCH A F, SMITH P J, et al. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice [J]. IEEE journal on selected areas in communications, 2017, 35(6): 1201–1221. DOI: 10.1109/JSAC.2017.2692307 |
5 | SHAFIQUE K, KHAWAJA B A, SABIR F, et al. Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios [J]. IEEE access, 2020, 8: 23022–23040. DOI: 10.1109/ACCESS.2020.2970118 |
6 | WANG C X, HAIDER F, GAO X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks [J]. IEEE communications magazine, 2014, 52(2): 122–130. DOI: 10.1109/MCOM.2014.6736752 |
7 | AGIWAL M, SAXENA N, ROY A. Towards connected living: 5G enabled Internet of Things (IoT) [J]. IETE technical review, 2019, 36(2): 190–202. DOI: 10.1080/02564602.2018.1444516 |
8 | YOU X H, WANG C X, HUANG J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts [J]. Science China information sciences, 2020, 64(1): 110301. DOI: 10.1007/s11432-020-2955-6 |
9 | ZHANG Z Q, XIAO Y, MA Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies [J]. IEEE vehicular technology magazine, 2019, 14(3): 28–41. DOI: 10.1109/MVT.2019.2921208 |
10 | YANG P, XIAO Y, XIAO M, et al. 6G wireless communications: vision and potential techniques [J]. IEEE network, 2019, 33(4): 70–75. DOI: 10.1109/MNET.2019.1800418 |
11 | ZHANG L, LIANG Y C, NIYATO D. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence [J]. China communications, 2019, 16(8): 1–14. DOI: 10.23919/JCC.2019.08.001 |
12 | LU H Q, ZENG Y, YOU C S, et al. A tutorial on near-field XL-MIMO communications towards 6G [EB/OL]. (2023-10-17) [2023-11-10]. |
13 | PIZZO A, SANGUINETTI L, MARZETTA T L. Fourier plane-wave series expansion for holographic MIMO communications [J]. IEEE transactions on wireless communications, 2022, 21(9): 6890–6905. DOI: 10.1109/TWC.2022.3152965 |
14 | CUI M Y, WU Z D, LU Y, et al. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions [J]. IEEE communications magazine, 2023, 61(1): 40–46. DOI: 10.1109/MCOM.004.2200136 |
15 | TATARIA H, SHAFI M, MOLISCH A F, et al. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities [J]. Proceedings of the IEEE, 2021, 109(7): 1166–1199. DOI: 10.1109/JPROC.2021.3061701 |
16 | AN J C, YUEN C, DAI L L, et al. Toward beam focusing-aided near-field communications: research advances, potential, and challenges [EB/OL] (2023-09-17) [2023-11-10]. |
17 | LIU Y W, WANG Z L, XU J Q, et al. Near-field communications: a tutorial review [EB/OL]. [2023-11-10]. |
18 | ZHANG H Y, SHLEZINGER N, GUIDI F, et al. 6G wireless communications: from far-field beam steering to near-field beam focusing [J]. IEEE communications magazine, 2023, 61(4): 72–77. DOI: 10.1109/MCOM.001.2200259 |
19 | SHERMAN J. Properties of focused apertures in the Fresnel region [J]. IRE transactions on antennas and propagation, 1962, 10(4): 399–408. DOI: 10.1109/TAP.1962.1137900 |
20 | SELVAN K T, JANASWAMY R. Fraunhofer and Fresnel Distances: unified derivation for aperture antennas [J]. IEEE antennas and propagation magazine, 2017, 59(4): 12–15. DOI: 10.1109/MAP.2017.2706648 |
21 | KRAUS J D, MARHEFKA R J. Antennas for all applications [M]. New York, USA: McGraw-Hill School, 2001 |
22 | LU H Q, ZENG Y. Communicating with extremely large-scale array/surface: unified modeling and performance analysis [J]. IEEE transactions on wireless communications, 2022, 21(6): 4039–4053. DOI: 10.1109/TWC.2021.3126384 |
23 | HEATH R W, GONZÁLEZ-PRELCIC N, RANGAN S, et al. An overview of signal processing techniques for millimeter wave MIMO systems [J]. IEEE journal of selected topics in signal processing, 2016, 10(3): 436–453. DOI: 10.1109/JSTSP.2016.2523924 |
24 | CUI M Y, DAI L L. Channel estimation for extremely large-scale MIMO: far-field or near-field? [J]. IEEE transactions on communications, 2022, 70(4): 2663–2677. DOI: 10.1109/TCOMM.2022.3146400 |
25 | MARTÍNEZ À O, DE CARVALHO E, NIELSEN J Ø. Towards very large aperture massive MIMO: a measurement based study [C]//IEEE Globecom Workshops (GC Wkshps). IEEE, 2014: 281–286. DOI: 10.1109/GLOCOMW.2014.7063445 |
26 | YUAN Z Q, ZHANG J H, JI Y L, et al. Spatial non-stationary near-field channel modeling and validation for massive MIMO systems [J]. IEEE transactions on antennas and propagation, 2023, 71(1): 921–933. DOI: 10.1109/TAP.2022.3218759 |
27 | HAN Y, JIN S, WEN C K, et al. Channel estimation for extremely large-scale massive MIMO systems [J]. IEEE wireless communications letters, 2020, 9(5): 633–637. DOI: 10.1109/LWC.2019.2963877 |
28 | TIAN J C, HAN Y, JIN S, et al. Low-overhead localization and VR identification for subarray-based ELAA systems [J]. IEEE wireless communications letters, 2023, 12(5): 784–788. DOI: 10.1109/LWC.2023.3244000 |
29 | LÓPEZ C F, WANG C X. Novel 3-D non-stationary wideband models for massive MIMO channels [J]. IEEE transactions on wireless communications, 2018, 17(5): 2893–2905. DOI: 10.1109/TWC.2018.2804385 |
30 | WANG J, WANG C X, HUANG J, et al. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems [J]. IEEE journal on selected areas in communications, 2021, 39(6): 1576–1589. DOI: 10.1109/JSAC.2021.3071850 |
31 | BAI T Y, HEATH R W. Analysis of beam sweep channel estimation in MmWave massive MIMO networks [C]//IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2016: 615–619. DOI: 10.1109/GlobalSIP.2016.7905915 |
32 | CHEN K J, QI C H, LI G Y. Two-step codeword design for millimeter wave massive MIMO systems with quantized phase shifters [J]. IEEE transactions on signal processing, 1027, 68: 170–180. DOI: 10.1109/TSP.2019.2959250 |
33 | MA K, HE D X, SUN H C, et al. Deep learning assisted mmWave beam prediction with prior low-frequency information [C]//IEEE International Conference on Communications. IEEE, 2021: 1–6. DOI: 10.1109/ICC42927.2021.9500788 |
34 | QI C H, WANG Y J, LI G Y. Deep learning for beam training in millimeter wave massive MIMO systems [J]. IEEE transactions on wireless communications, 2020. DOI: 10.1109/TWC.2020.3024279 |
35 | QI C H, DONG P H, MA W Y, et al. Acquisition of channel state information for mmWave massive MIMO: traditional and machine learning-based approaches [J]. Science China information sciences, 2021, 64(8): 181301. DOI: 10.1007/s11432-021-3247-2 |
36 | WEI X H, DAI L L, ZHAO Y J, et al. Codebook design and beam training for extremely large-scale RIS: far-field or near-field? [J]. China communications, 2022, 19(6): 193–204. DOI: 10.23919/JCC.2022.06.015 |
37 | ZHANG Y P, WU X, YOU C S. Fast near-field beam training for extremely large-scale array [J]. IEEE wireless communications letters, 2022, 11(12): 2625–2629. DOI: 10.1109/LWC.2022.3212344 |
38 | REZAIE S, MANCHÓN C N, DE CARVALHO E. Location- and orientation-aided millimeter wave beam selection using deep learning [C]//IEEE International Conference on Communications (ICC). IEEE, 2020: 1–6. DOI: 10.1109/ICC40277.2020.9149272 |
39 | JIANG G L, QI C H. Near-field beam training based on deep learning for extremely large-scale MIMO [J]. IEEE communications letters, 2023, 27(8): 2063–2067. DOI: 10.1109/LCOMM.2023.3289513 |
40 | LIU W, REN H, PAN C H, et al. Deep learning based beam training for extremely large-scale massive MIMO in near-field domain [J]. IEEE communications letters, 2023, 27(1): 170–174. DOI: 10.1109/LCOMM.2022.3210042 |
41 | LIU W, PAN C H, REN H, et al. Low-overhead beam training scheme for extremely large-scale RIS in near field [J]. IEEE transactions on communications, 2023, 71(8): 4924–4940. DOI: 10.1109/TCOMM.2023.3278728 |
42 | FAN D, GAO F F, LIU Y W, et al. Angle domain channel estimation in hybrid millimeter wave massive MIMO systems [J]. IEEE transactions on wireless communications, 2018, 17(12): 8165–8179. DOI: 10.1109/TWC.2018.2874640 |
43 | ZHOU G, PAN C H, REN H, et al. Channel estimation for RIS-aided multiuser millimeter-wave systems [J]. IEEE transactions on signal processing, 2021, 70: 1478–1492. DOI: 10.1109/TSP.2022.3158024 |
44 | HE J G, WYMEERSCH H, KONG L, et al. Large intelligent surface for positioning in millimeter wave MIMO systems [C]//The 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020: 1–5. DOI: 10.1109/VTC2020-Spring48590.2020.9129075 |
45 | LIU Y, HONG S, PAN C H, et al. Optimization of RIS configurations for multiple-RIS-aided mmWave positioning systems based on CRLB analysis [EB/OL]. (2021-11-28) [2023-12-12]. |
46 | WANG R, XING Z, LIU E W. Joint location and communication study for intelligent reflecting surface aided wireless communication system [EB/OL]. (2021-05-01) [2023-12-12]. |
47 | FENG Z Y, WANG B, ZHAO Y P, et al. Power optimization for target localization with reconfigurable intelligent surfaces [J]. Signal processing, 2021, 189: 108252. DOI: 10.1016/j.sigpro.2021.108252 |
48 | ELZANATY A, GUERRA A, GUIDI F, et al. Reconfigurable intelligent surfaces for localization: position and orientation error bounds [J]. IEEE transactions on signal processing, 2021, 69: 5386–5402. DOI: 10.1109/TSP.2021.3101644 |
49 | ZHANG H B, ZHANG H L, DI B Y, et al. Towards ubiquitous positioning by leveraging reconfigurable intelligent surface [J]. IEEE communications letters, 2021, 25(1): 284–288. DOI: 10.1109/LCOMM.2020.3023130 |
50 | HE J G, WYMEERSCH H, SANGUANPUAK T, et al. Adaptive beamforming design for mmWave RIS-aided joint localization and communication [C]//IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, 2020: 1–6. DOI: 10.1109/WCNCW48565.2020.9124848 |
51 | FASCISTA A, COLUCCIA A, WYMEERSCH H, et al. RIS-aided joint localization and synchronization with a single-antenna mmwave receiver [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 4455–4459. DOI: 10.1109/ICASSP39728.2021.9413515 |
52 | WU T, PAN C H, PAN Y J, et al. Fingerprint-based mmWave positioning system aided by reconfigurable intelligent surface [J]. IEEE wireless communications letters, 2023, 12(8): 1379–1383. DOI: 10.1109/LWC.2023.3275204 |
53 | CHEN J C, HUDSON R E, YAO K. Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field [J]. IEEE transactions on signal processing, 2002, 50(8): 1843–1854. DOI: 10.1109/TSP.2002.800420 |
54 | ABU-SHABAN Z, KEYKHOSRAVI K, KESKIN M F, et al. Near-field localization with a reconfigurable intelligent surface acting as lens [C]//IEEE International Conference on Communications. IEEE, 2021: 1–6. DOI: 10.1109/ICC42927.2021.9500663 |
55 | RAHAL M, DENIS B, KEYKHOSRAVI K, et al. RIS-enabled localization continuity under near-field conditions [C]//The 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021: 436–440. DOI: 10.1109/SPAWC51858.2021.9593200 |
56 | PAN Y J, PAN C H, JIN S, et al. RIS-aided near-field localization and channel estimation for the terahertz system [J]. IEEE journal of selected topics in signal processing, 2023, 17(4): 878–892. DOI: 10.1109/JSTSP.2023.3285431 |
57 | PAYAMI S, TUFVESSON F. Channel measurements and analysis for very large array systems at 2.6 GHz [C]//The 6th European Conference on Antennas and Propagation (EUCAP). IEEE, 2012: 433–437. DOI: 10.1109/EuCAP.2012.6206345 |
58 | AMIRI A, ANGJELICHINOSKI M, DE CARVALHO E, et al. Extremely large aperture massive MIMO: low complexity receiver architectures [C]//IEEE Globecom Workshops (GC Wkshps). IEEE, 2018: 1–6. DOI: 10.1109/GLOCOMW.2018.8644126 |
59 | MARINELLO J C, ABRÃO T, AMIRI A, et al. Antenna selection for improving energy efficiency in XL-MIMO systems [J]. IEEE transactions on vehicular technology, 2020, 69(11): 13305–13318. DOI: 10.1109/TVT.2020.3022708 |
60 | ZHI K D, PAN C H, REN H, et al. Performance analysis and low-complexity design for XL-MIMO with near-field spatial non-stationarities [EB/OL]. (2023-03-21) [2023-12-12]. |
[1] | SHEN Jiayu, YANG Jun, ZHU Chen, DENG Zhiji, HUANG Chongwen. Near-Field Beam Training for Holographic MIMO Communications: Typical Methods, Challenges and Future Directions [J]. ZTE Communications, 2024, 22(1): 41-52. |
[2] | LU Ping, SHENG Bin, SHI Wenzhe. Scene Visual Perception and AR Navigation Applications [J]. ZTE Communications, 2023, 21(1): 81-88. |
[3] | PEI Dengke, XU Xiaodong, QIN Xiaowei, LIU Dongliang, ZHAO Chunhua. A Low-Cost Outdoor Fingerprinting Localization Scheme For Wireless Cellular Networks [J]. ZTE Communications, 2019, 17(3): 42-49. |
[4] | Chisheng Zhang, Jiannong Cao, Gang Yao. Networking-GPS: Cooperative Vehicle Localization Using Commodity GPS in Urban Area [J]. ZTE Communications, 2014, 12(1): 33-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||