ZTE Communications ›› 2022, Vol. 20 ›› Issue (4): 41-51.DOI: 10.12142/ZTECOM.202204006
• Special Topic • Previous Articles Next Articles
HE Miao, LI Xiangman, NI Jianbing()
Received:
2022-09-11
Online:
2022-12-30
Published:
2022-12-30
About author:
HE Miao received his BE degree from Zhejiang University, China and MASc degree from the University of Waterloo, Canada, respectively. He is currently pursuing his PhD degree with the Department of Electrical and Computer Engineering, Queen’s University, Canada. His research interests include signal processing, applied cryptography and information security, with current focus on beamforming using large antenna arrays and physical layer security in millimeter-wave wireless communications.|LI Xiangman received her BE degree from the Department of Electrical and Computer Engineering, Queen’s University, Canada. She is currently pursuing the MASc degree with the Department of Electrical and Computer Engineering, Queen’s University. Her research interests include machine learning security, secure data trading, and Blockchain Technology.|NI Jianbing (HE Miao, LI Xiangman, NI Jianbing. Physical Layer Security for MmWave Communications: Challenges and Solutions[J]. ZTE Communications, 2022, 20(4): 41-51.
Acronym | Definition |
---|---|
ADC | analog-to-digital converter |
AN | artificial noise |
BS | base station |
CE | constant envelope |
CJ | cooperative jamming |
CSI | channel state information |
DAC | digital-to-analog converter |
DM | directional modulation |
DMC | discrete memoryless channel |
DPC | directional precoding |
IoT | Internet of Things |
IoV | Internet of Vehicles |
LOS | line-of-sight |
LTE | Long-Term Evolution |
MIMO | multiple-input and multiple-output |
MISO | multiple-input single-output |
OFDM | orthogonal frequency-division multiplexing |
OTP | one time pad |
PA | power amplifier |
PAPR | peak to average power ratio |
PLS | physical layer security |
PS | phase shifter |
QPSK | quadratic phase shift keying |
RF | radio frequency |
SNR | signal-to-noise ratio |
UAV | unmanned aerial vehicle |
ULA | uniform linear array |
Table 1 Summary of Acronyms
Acronym | Definition |
---|---|
ADC | analog-to-digital converter |
AN | artificial noise |
BS | base station |
CE | constant envelope |
CJ | cooperative jamming |
CSI | channel state information |
DAC | digital-to-analog converter |
DM | directional modulation |
DMC | discrete memoryless channel |
DPC | directional precoding |
IoT | Internet of Things |
IoV | Internet of Vehicles |
LOS | line-of-sight |
LTE | Long-Term Evolution |
MIMO | multiple-input and multiple-output |
MISO | multiple-input single-output |
OFDM | orthogonal frequency-division multiplexing |
OTP | one time pad |
PA | power amplifier |
PAPR | peak to average power ratio |
PLS | physical layer security |
PS | phase shifter |
QPSK | quadratic phase shift keying |
RF | radio frequency |
SNR | signal-to-noise ratio |
UAV | unmanned aerial vehicle |
ULA | uniform linear array |
Category | Hardware Cost | Computation Cost | Power Efficiency |
---|---|---|---|
DM | Medium | Depend | High |
AN | Low | Medium | Low |
DPC | High | High | High |
Table 2 Cost and power efficiency comparison of mmWave physical layer security (PLS) techniques
Category | Hardware Cost | Computation Cost | Power Efficiency |
---|---|---|---|
DM | Medium | Depend | High |
AN | Low | Medium | Low |
DPC | High | High | High |
MmWave PLS Technique | Category | Bob | Eve | Bob Antenna | Eve Antenna | CSI | Propagation |
---|---|---|---|---|---|---|---|
Subset array[ | DM | Single | Multiple | Single | Single | Bob only | Single path |
Polygon[ | DM | Single | Multiple | Single | Single | Bob only | Multiple path |
PZF[ | AN | Multiple | Single | Single | Multiple | Both | Single path |
CEP[ | DPC | Multiple | Multiple | Single | Single | Both | Single path |
Table 3 Property comparison of mmWave physical layer security (PLS) schemes
MmWave PLS Technique | Category | Bob | Eve | Bob Antenna | Eve Antenna | CSI | Propagation |
---|---|---|---|---|---|---|---|
Subset array[ | DM | Single | Multiple | Single | Single | Bob only | Single path |
Polygon[ | DM | Single | Multiple | Single | Single | Bob only | Multiple path |
PZF[ | AN | Multiple | Single | Single | Multiple | Both | Single path |
CEP[ | DPC | Multiple | Multiple | Single | Single | Both | Single path |
1 |
XIAO M, MUMTAZ S, HUANG Y M, et al. Millimeter wave communications for future mobile networks [J]. IEEE journal on selected areas in communications, 2017, 35(9): 1909–1935. DOI: 10.1109/JSAC.2017.2719924
DOI |
2 | 3GPP. NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone: 3GPP TS 38.101-2 version 16.3.1 [S]. 2020 |
3 | DOLCOURT J. We tested 5G speeds across the globe [EB/OL]. [2022-03-31]. |
4 |
HEATH R W, GONZÁLEZ-PRELCIC N, RANGAN S, et al. An overview of signal processing techniques for millimeter wave MIMO systems [J]. IEEE journal of selected topics in signal processing, 2016, 10(3): 436–453. DOI: 10.1109/JSTSP.2016.2523924
DOI |
5 |
BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G [J]. IEEE communications magazine, 2014, 52(2):74–80. DOI: 10.1109/MCOM.2014.6736746
DOI |
6 |
ROH W, SEOL J Y, PARK J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results [J]. IEEE communications magazine, 2014, 52(2): 106–113. DOI: 10.1109/mcom.2014.6736750
DOI |
7 |
YU Q, REN J, FU Y J, et al. Cybertwin: An origin of next generation network architecture [J]. IEEE wireless communications, 2019, 26(6): 111–117. DOI: 10.1109/MWC.001.1900184
DOI |
8 |
YANG N, WANG L F, GERACI G, et al. Safeguarding 5G wireless communication networks using physical layer security [J]. IEEE communications magazine, 2015, 53(4): 20–27. DOI: 10.1109/MCOM.2015.7081071
DOI |
9 |
WANG L F, ELKASHLAN M, DUONG T Q, et al. Secure communication in cellular networks: The benefits of millimeter wave mobile broadband [C]//IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2014: 115–119. DOI: 10.1109/SPAWC.2014.6941328
DOI |
10 |
ZHU Y X, WANG L F, WONG K K, et al. Secure communications in millimeter wave ad hoc networks [J]. IEEE transactions on wireless communications, 2017, 16(5): 3205–3217. DOI: 10.1109/TWC.2017.2676087
DOI |
11 |
WANG C, WANG H M. Physical layer security in millimeter wave cellular networks [J]. IEEE transactions on wireless communications, 2016, 15(8): 5569–5585. DOI: 10.1109/TWC.2016.2562010
DOI |
12 |
MUKHERJEE A, FAKOORIAN S A A, HUANG J, et al. Principles of physical layer security in multiuser wireless networks: a survey [J]. IEEE communications surveys & tutorials, 2014, 16(3): 1550–1573. DOI: 10.1109/SURV.2014.012314.00178
DOI |
13 |
ALAM K M, SAINI M, SADDIK A E. Toward social Internet of vehicles: concept, architecture, and applications [J]. IEEE access, 2015, 3: 343–357. DOI: 10.1109/ACCESS.2015.2416657
DOI |
14 |
ZENG K. Physical layer key generation in wireless networks: challenges and opportunities [J]. IEEE communications magazine, 2015, 53(6): 33–39. DOI: 10.1109/MCOM.2015.7120014
DOI |
15 |
WU Y P, KHISTI A, XIAO C S, et al. A survey of physical layer security techniques for 5G wireless networks and challenges ahead [J]. IEEE journal on selected areas in communications, 2018, 36(4): 679–695. DOI: 10.1109/JSAC.2018.2825560
DOI |
16 |
ZHENG T X, WANG H M, YANG Q, et al. Safeguarding decentralized wireless networks using full-duplex jamming receivers [J]. IEEE transactions on wireless communications, 2017, 16(1): 278–292. DOI: 10.1109/TWC.2016.2622689
DOI |
17 |
WANG N, WANG P, ALIPOUR-FANID A, et al. Physical-layer security of 5G wireless networks for IoT: challenges and opportunities [J]. IEEE Internet of Things journal, 2019, 6(5): 8169–8181. DOI: 10.1109/JIOT.2019.2927379
DOI |
18 |
DAVIES D. A brief history of cryptography [J]. Information security technical report, 1997, 2(2): 14–17. DOI: 10.1016/s1363-4127(97)81323-4
DOI |
19 | SHANNON C E. A mathematical theory of cryptography [J]. Mathematical theory of cryptography, 1945 |
20 |
WYNER A D. The wire-tap channel [J]. The bell system technical journal, 1975, 54(8): 1355–1387. DOI: 10.1002/j.1538-7305.1975.tb02040.x
DOI |
21 |
LEUNG-YAN-CHEONG S, HELLMAN M. The Gaussian wire-tap channel [J]. IEEE transactions on information theory, 1978, 24(4): 451–456. DOI: 10 .1109/TIT.1978.1055917
DOI |
22 |
BLOCH M, BARROS J, RODRIGUES M R D, et al. Wireless information-theoretic security [J]. IEEE transactions on information theory, 2008, 54(6): 2515–2534. DOI: 10.1109/TIT.2008.921908
DOI |
23 |
PI Z Y, KHAN F. An introduction to millimeter-wave mobile broadband systems [J]. IEEE communications magazine, 2011, 49(6): 101–107. 10.1109/MCOM.2011.5783993
DOI |
24 |
AKDENIZ M R, LIU Y P, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation [J]. IEEE journal on selected areas in communications, 2014, 32(6): 1164–1179. DOI: 10.1109/jsac.2014.2328154
DOI |
25 |
DING Y, FUSCO V F. A vector approach for the analysis and synthesis of directional modulation transmitters [J]. IEEE transactions on antennas and propagation, 2014, 62(1): 361–370. DOI: 10.1109/TAP.2013.2287001
DOI |
26 |
DALY M P, BERNHARD J T. Directional modulation technique for phased arrays [J]. IEEE transactions on antennas and propagation, 2009, 57(9): 2633–2640. DOI: 10.1109/TAP.2009.2027047
DOI |
27 |
DALY M P, DALY E L, BERNHARD J T. Demonstration of directional modulation using a phased array [J]. IEEE transactions on antennas and propagation, 2010, 58(5): 1545–1550. DOI: 10.1109/TAP.2010.2044357
DOI |
28 |
DING Y, FUSCO V F. Constraining directional modulation transmitter radiation patterns [J]. IET microwaves, antennas & propagation, 2014, 8(15): 1408–1415. DOI: 10.1049/iet-map.2014.0042
DOI |
29 |
DING Y, FUSCO V F. MIMO-inspired synthesis of directional modulation systems [J]. IEEE antennas and wireless propagation letters, 2016, 15: 580–584. DOI: 10.1109/LAWP.2015.2459752
DOI |
30 |
DING Y, FUSCO V, CHEPALA A. Circular directional modulation transmitter array [J]. IET microwaves, antennas & propagation, 2017, 11(13): 1909–1917. DOI: 10.1049/iet-map.2016.1140
DOI |
31 |
DING Y, FUSCO V. A synthesis-free directional modulation transmitter using retrodirective array [J]. IEEE journal of selected topics in signal processing, 2017, 11(2): 428–441. DOI: 10.1109/JSTSP.2016.2605066
DOI |
32 |
CHEN X M, NG D W K, GERSTACKER W H, et al. A survey on multiple-antenna techniques for physical layer security [J]. IEEE communications surveys & tutorials, 2017, 19(2): 1027–1053. DOI: 10.1109/COMST.2016.2633387
DOI |
33 |
ZHU J, WANG N, BHARGAVA V K. Per-antenna constant envelope precoding for secure transmission in large-scale MISO systems [C]//IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2016: 1–6. DOI: 10.1109/ICCChina.2015.7448727
DOI |
34 |
LEE G, SUNG Y, KOUNTOURIS M. On the performance of random beamforming in sparse millimeter wave channels [J]. IEEE journal of selected topics in signal processing, 2016, 10(3): 560–575. DOI: 10.1109/JSTSP.2016.2524999
DOI |
35 |
XU H, KUKSHYA V, RAPPAPORT T S. Spatial and temporal characteristics of 60-GHz indoor channels [J]. IEEE journal on selected areas in communications, 2006, 20(3): 620–630. DOI: 10.1109/49.995521
DOI |
36 |
VALLIAPPAN N, LOZANO A, HEATH R W. Antenna subset modulation for secure millimeter-wave wireless communication [J]. IEEE transactions on communications, 2013, 61(8): 3231–3245. DOI: 10.1109/TCOMM.2013.061013.120459
DOI |
37 |
BABAKHANI A, RUTLEDGE D B, HAJIMIRI A. A near-field modulation technique using antenna reflector switching [C]//IEEE International Solid-State Circuits Conference—Digest of Technical Papers. IEEE, 2009: 188–189+605. DOI: 10.1109/ISSCC.2008.4523120
DOI |
38 |
MADIHIAN M, DESCLOS L, MARUHASHI K, et al. A high-speed resonance-type FET transceiver switch for millimeter-wave band wireless network [C]//26th European Microwave Conference. IEEE, 2007: 941–944. DOI: 10.1109/EUMA.1996.337731
DOI |
39 |
ALOTAIBI N N, HAMDI K A. Switched phased-array transmission architecture for secure millimeter-wave wireless communication [J]. IEEE transactions on communications, 2016, 64(3): 1303–1312. DOI: 10.1109/TCOMM.2016.2519403
DOI |
40 |
HONG Y Q, JING X J, GAO H. Programmable weight phased-array transmission for secure millimeter-wave wireless communications [J]. IEEE journal of selected topics in signal processing, 2018, 12(2): 399–413. DOI: 10.1109/JSTSP.2018.2822048
DOI |
41 |
HE M, NI J B, HE Y Y, et al. Low-complexity phased-array physical layer security in millimeter-wave communication for cybertwin-driven V2X applications [J]. IEEE transactions on vehicular technology, 2022, 71(5): 4573–4583. DOI: 10.1109/TVT.2021.3138702
DOI |
42 |
YE N, ZHUO X R, LI J G, et al. Secure directional modulation in RIS-aided networks: a low-sidelobe hybrid beamforming approach [J]. IEEE wireless communications letters, 2022, 11(8): 1753–1757. DOI: 10.1109/LWC.2022.3180931
DOI |
43 |
GOEL S, NEGI R. Guaranteeing secrecy using artificial noise [J]. IEEE transactions on wireless communications, 2008, 7(6): 2180–2189. DOI: 10.1109/TWC.2008.060848
DOI |
44 |
KHISTI A, WORNELL G W. Secure transmission with multiple antennas I: the MISOME wiretap channel [J]. IEEE transactions on information theory, 2010, 56(7): 3088–3104. DOI: 10.1109/tit.2010.2048445
DOI |
45 |
ZHOU X Y, MCKAY M R. Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation [J]. IEEE transactions on vehicular technology, 2010, 59(8): 3831–3842. DOI: 10.1109/TVT.2010.2059057
DOI |
46 |
ZHANG X, MCKAY M R, ZHOU X Y, et al. Artificial-noise-aided secure multi-antenna transmission with limited feedback [J]. IEEE transactions on wireless communications, 2015, 14(5): 2742–2754. DOI: 10.1109/TWC.2015.2391261
DOI |
47 |
WANG H M, WANG C, NG D W K. Artificial noise assisted secure transmission under training and feedback [J]. IEEE transactions on signal processing, 2015, 63(23): 6285–6298. DOI: 10.1109/TSP.2015.2465301
DOI |
48 |
WU Y P, SCHOBER R, NG D W K, et al. Secure massive MIMO transmission with an active eavesdropper [J]. IEEE transactions on information theory, 2016, 62(7): 3880–3900. DOI: 10.1109/TIT.2016.2569118
DOI |
49 |
DO T T, NGO H Q, DUONG T Q, et al. Massive MIMO pilot retransmission strategies for robustification against jamming [J]. IEEE wireless communications letters, 2017, 6(1): 58–61. DOI: 10.1109/LWC.2016.2631163
DOI |
50 |
ZHAO W Y, LEE S H, KHISTI A. Phase-only zero forcing for secure communication with multiple antennas [J]. IEEE journal of selected topics in signal processing, 2016, 10(8): 1334–1345. DOI: 10.1109/JSTSP.2016.2611483
DOI |
51 |
SOHRABI F, YU W. Hybrid digital and analog beamforming design for large-scale antenna arrays [J]. IEEE journal of selected topics in signal processing, 2016, 10(3): 501–513. DOI: 10.1109/JSTSP.2016.2520912
DOI |
52 |
DOAN C H, EMAMI S, SOBEL D A, et al. Design considerations for 60 GHz CMOS radios [J]. IEEE communications magazine, 2004, 42(12): 132–140. DOI: 10.1109/MCOM.2004.1367565
DOI |
53 |
RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays [J]. IEEE signal processing magazine, 2013, 30(1): 40–60. DOI: 10.1109/MSP.2011.2178495
DOI |
54 |
XU J D, XU W, ZHU J, et al. Secure massive MIMO communication with low-resolution DACs [J]. IEEE transactions on communications, 2019, 67(5): 3265–3278. DOI: 10.1109/TCOMM.2019.2895023
DOI |
55 |
XU J D, XU W, NG D W K, et al. Secure communication for spatially sparse millimeter-wave massive MIMO channels via hybrid precoding [J]. IEEE transactions on communications, 2020, 68(2): 887–901. DOI: 10.1109/TCOMM.2019.2954517
DOI |
56 |
ELTAYEB M E, CHOI J, AL-NAFFOURI T Y, et al. Enhancing secrecy with multiantenna transmission in millimeter wave vehicular communication systems [J]. IEEE transactions on vehicular technology, 2017, 66(9): 8139–8151. DOI: 10.1109/TVT.2017.2681965
DOI |
57 |
JU Y, WANG H Y, PEI Q Q, et al. Physical layer security in millimeter wave DF relay systems [J]. IEEE transactions on wireless communications, 2019, 18(12): 5719–5733. DOI: 10.1109/TWC.2019.2938757
DOI |
58 |
JU Y, ZHU Y Z, WANG H M, et al. Artificial noise hopping: a practical secure transmission technique with experimental analysis for millimeter wave systems [J]. IEEE systems journal, 2020, 14(4): 5121–5132. DOI: 10.1109/JSYST.2020.2976852
DOI |
59 |
LIN Z, LIN M, WANG J B, et al. Robust secure beamforming for 5G cellular networks coexisting with satellite networks [J]. IEEE journal on selected areas in communications, 2018, 36(4): 932–945. DOI: 10.1109/JSAC.2018.2824760
DOI |
60 |
LIN M, LIN Z, ZHU W P, et al. Joint beamforming for secure communication in cognitive satellite terrestrial networks [J]. IEEE journal on selected areas in communications, 2018, 36(5): 1017–1029. DOI: 10.1109/JSAC.2018.2832819
DOI |
61 |
XU W Y, LI B, TAO L L, et al. Artificial noise assisted secure transmission for uplink of massive MIMO systems [J]. IEEE transactions on vehicular technology, 2021, 70(7): 6750–6762. DOI: 10.1109/TVT.2021.3081803
DOI |
62 |
CHEN W R, CHEN Z, NING B Y, et al. Artificial noise aided hybrid precoding design for secure mmWave MIMO system [C]//Proceedings of 2019 IEEE Global Communications Conference (GLOBECOM). ACM, 2019: 1–6. DOI: 10.1109/GLOBECOM38437.2019.9013417
DOI |
63 |
LI H Y, LI M, LIU Q, et al. Dynamic hybrid beamforming with low-resolution PSs for wideband mmWave MIMO-OFDM systems [J]. IEEE journal on selected areas in communications, 2020, 38(9): 2168–2181. DOI: 10.1109/JSAC.2020.3000878
DOI |
64 |
TIAN X W, WANG Z H, LI H Y, et al. Secure hybrid beamforming with low-resolution phase shifters in mmWave MIMO systems [C]//Proceedings of 2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2020: 1–6. DOI: 10.1109/GLOBECOM38437.2019.9013333
DOI |
65 |
LI H Y, LIU R, LI M, et al. FP-based hybrid precoding with dynamic subarrays and low-resolution PSs [C]//11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2019: 1–6. DOI: 10.1109/WCSP.2019.8928111
DOI |
66 |
LI H Y, LIU Q, WANG Z H, et al. Joint antenna selection and analog precoder design with low-resolution phase shifters [J]. IEEE transactions on vehicular technology, 2019, 68(1): 967–971. DOI: 10.1109/TVT.2018.2879083
DOI |
67 |
LIU R, LI H Y, GUO Y Q, et al. Hybrid beamformer design with low-resolution phase shifters in MU-MISO SWIPT systems [C]//Proceedings of 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2018: 1–6. DOI: 10.1109/WCSP.2018.8555694
DOI |
68 |
HUANG Y M, ZHANG J J, XIAO M. Constant envelope hybrid precoding for directional millimeter-wave communications [J]. IEEE journal on selected areas in communications, 2018, 36(4): 845–859. DOI: 10.1109/JSAC.2018.2825820
DOI |
69 |
LI H Y, LI M, LIU Q. Hybrid beamforming with dynamic subarrays and low-resolution PSs for mmWave MU-MISO systems [J]. IEEE transactions on communications, 2020, 68(1): 602–614. DOI: 10.1109/TCOMM.2019.2950905
DOI |
70 |
WANG Z H, LI M, LI H Y, et al. Hybrid beamforming with one-bit quantized phase shifters in mmWave MIMO systems [C]//Proceedings of 2018 IEEE International Conference on Communications (ICC). IEEE, 2018: 1–6. DOI: 10.1109/ICC.2018.8422249
DOI |
71 |
LI H Y, LIU Q, WANG Z H, et al. Transmit antenna selection and analog beamforming with low-resolution phase shifters in mmWave MISO systems [J]. IEEE communications letters, 2018, 22(9): 1878–1881. DOI: 10.1109/LCOMM.2018.2852304
DOI |
72 |
DONG L, HAN Z, PETROPULU A P, et al. Improving wireless physical layer security via cooperating relays [J]. IEEE transactions on signal processing, 2010, 58(3): 1875–1888. DOI: 10.1109/TSP.2009.2038412
DOI |
73 |
HU L, WEN H, WU B, et al. Cooperative-jamming-aided secrecy enhancement in wireless networks with passive eavesdroppers [J]. IEEE transactions on vehicular technology, 2018, 67(3): 2108–2117. DOI: 10.1109/TVT.2017.2744660
DOI |
74 |
SONG H H, WEN H, HU L, et al. Secure cooperative transmission with imperfect channel state information based on BPNN [J]. IEEE transactions on vehicular technology, 2018, 67(11): 10482–10491. DOI: 10.1109/TVT.2018.2849364
DOI |
75 |
LI C, XU Y, XIA J J, et al. Protecting secure communication under UAV smart attack with imperfect channel estimation [J]. IEEE access, 2018, 6: 76395–76401. DOI: 10.1109/ACCESS.2018.2880979
DOI |
76 |
MA R Q, YANG W W, ZHANG Y, et al. Secure mmWave communication using UAV-enabled relay and cooperative jammer [J]. IEEE access, 2019, 7: 119729–119741. DOI: 10.1109/ACCESS.2019.2933231
DOI |
77 |
SUN Y W, GAO Z, WANG H, et al. Machine learning based hybrid precoding for mmWave MIMO-OFDM with dynamic subarray [C]//IEEE Globecom Workshops (GC Wkshps). IEEE, 2019: 1–6. DOI: 10.1109/GLOCOMW.2018.8644321
DOI |
78 |
ALI A A M, EL-SHAARAWY H B, AUBERT H. Millimeter-wave substrate integrated waveguide passive van atta reflector array [J]. IEEE transactions on antennas and propagation, 2013, 61(3): 1465–1470. DOI: 10.1109/TAP.2012.2228622
DOI |
79 |
DING Y, FUSCO V. Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters [J]. IEEE antennas and wireless propagation letters, 2015, 14: 1330–1333. DOI: 10.1109/LAWP.2015.2404818
DOI |
80 |
HONG T, SONG M Z, LIU Y. Dual-beam directional modulation technique for physical-layer secure communication [J]. IEEE antennas and wireless propagation letters, 2011, 10: 1417–1420. DOI: 10.1109/LAWP.2011.2178384
DOI |
81 |
SHI H Z, TENNANT A. Simultaneous, multichannel, spatially directive data transmission using direct antenna modulation [J]. IEEE transactions on antennas and propagation, 2014, 62(1): 403–410. DOI: 10.1109/TAP.2013.2287284
DOI |
[1] | MENG Fan, HUANG Yongming, LU Zhaohua, XIAO Huahua. Multi-User MmWave Beam Tracking via Multi-Agent Deep Q-Learning [J]. ZTE Communications, 2023, 21(2): 53-60. |
[2] | LI Yezhen, REN Yongli, YANG Fan, XU Shenheng, ZHANG Jiannian. A Novel 28 GHz Phased Array Antenna for 5G Mobile Communications [J]. ZTE Communications, 2020, 18(3): 20-25. |
[3] | Alexander A. Okandeji, Muhammad R. A. Khandaker, WONG Kai-Kit, ZHANG Yangyang, ZHENG Zhongbin. Secure Beamforming Design for SWIPT in MISO Full-Duplex Systems [J]. ZTE Communications, 2018, 16(1): 38-46. |
[4] | Jinhong Yuan, Yixian Yang, and Nanrun Zhou. Guest Editorial: Physical Layer Security forWireless and Quantum Communications [J]. ZTE Communications, 2013, 11(3): 1-2. |
[5] | Biao He, Xiangyun Zhou, and Thushara D. Abhayapala. Wireless Physical Layer Security with Imperfect Channel State Information: A Survey [J]. ZTE Communications, 2013, 11(3): 11-19. |
[6] | Nan Yang, Maged Elkashlan, Phee Lep Yeoh, and Jinhong Yuan. An Introduction to Transmit Antenna Selection in MIMOWiretap Channels [J]. ZTE Communications, 2013, 11(3): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||