1 |
ZENG J A, PLALE B. KVLight: A lightweight key-value store for distributed access in cloud [C]//The 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2016: 473–482. DOI: 10.1109/CCGrid.2016.55
DOI
|
2 |
SUN L, ZHAO J, YE X, et al. Conditional analysis for key-value data with local differential privacy [EB/OL]. (2019-07-11) [2022-09-20].
|
3 |
ANGELINI L, CAON M, CARRINO S, et al. Designing a desirable smart bracelet for older adults [C]//Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. ACM, 2013: 425–434. DOI: 10.1145/2494091.2495974
DOI
|
4 |
MENG J K, ZHENG Z B, TAO G H, et al. User-specific rating prediction for mobile applications via weight-based matrix factorization [C]//Proceedings of 2016 IEEE International Conference on Web Services. IEEE, 2016: 728–731. DOI: 10.1109/ICWS.2016.104
DOI
|
5 |
BALAKRISHNAN S, CHOPRA S, APPLEGATE D, et al. Computational television advertising [C]//Proceedings of 2012 IEEE 12th International Conference on Data Mining. IEEE, 2012: 71–80. DOI: 10.1109/ICDM.2012.129
DOI
|
6 |
DUCHI J C, JORDAN M I, WAINWRIGHT M J. Local privacy and statistical minimax rates [C]//Proceedings of 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE, 2013: 429–438. DOI: 10.1109/FOCS.2013.53
DOI
|
7 |
TANG J, KOROLOVA A, BAI X, et al. Privacy loss in apple’s implementation of differential privacy on macOS 10.12. [EB/OL]. [2022-09-20]. ’s_Implementation_of_Differential_Privacy_on_MacOS_1012
|
8 |
DING B, KULKARNI J, YEKHANIN S. Collecting telemetry data privately [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, IEEE, 2017: 3574–3583
|
9 |
YE Q Q, HU H B, MENG X F, et al. PrivKV: key-value data collection with local differential privacy [C]//Proceedings of 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019: 317–331. DOI: 10.1109/sp.2019.00018
DOI
|
10 |
GU X, LI M, CHENG Y, et al. PCKV: locally differentially private correlated key-value data collection with optimized utility [EB/OL]. (2019-11-28) [2022-09-20].
|
11 |
MURAKAMI T, KAWAMOTO Y. Utility-optimized local differential privacy mechanisms for distribution estimation [C]//Proceedings of the 28th USENIX Conference on Security Symposium. SEC, 2019: 1877–1894
|
12 |
DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis [J]. Theory of cryptography, 2006: 265–284. DOI: 10.1007/11681878_14
DOI
|
13 |
ERLINGSSON Ú, PIHUR V, KOROLOVA A. RAPPOR: randomized aggregatable privacy-preserving ordinal response [C]//The 2014 ACM SIGSAC Conference on Computer and Communications Security. CCS, 2014: 1054–1067. DOI: 10.1145/2660267.2660348
DOI
|
14 |
WANG T H, LI N H, JHA S. Locally differentially private heavy hitter identification [J]. IEEE transactions on dependable and secure computing, 2021, 18(2): 982–993. DOI: 10.1109/TDSC.2019.2927695
DOI
|
15 |
WANG T H, BLOCKI J, LI N H, et al. Locally differentially private protocols for frequency estimation [C]//The 26th USENIX Conference on Security Symposium. USENIX, 2017: 729–745
|
16 |
SONG S, WANG Y Z, CHAUDHURI K. Pufferfish privacy mechanisms for correlated data [C]//Proceedings of the 2017 ACM International Conference on Management of Data. ACM, 2017: 1291–1306. DOI: 10.1145/3035918.3064025
DOI
|
17 |
NARAYANAN A, SHMATIKOV V. Myths and fallacies of “personally identifiable information” [J]. Communications of the ACM, 2010, 53(6): 24–26. DOI: 10.1145/1743546.1743558
DOI
|
18 |
WANG T H, LI N H, JHA S. Locally differentially private frequent itemset mining [C]//Proceedings of 2018 IEEE Symposium on Security and Privacy. IEEE, 2018: 127–143. DOI: 10.1109/SP.2018.00035
DOI
|
19 |
DUCHI J C, JORDAN M I, WAINWRIGHT M J. Minimax optimal procedures for locally private estimation [J]. Journal of the American statistical association, 2018, 113(521): 182–201. DOI: 10.1080/01621459.2017.1389735
DOI
|
20 |
WANG N, XIAO X K, YANG Y, et al. Collecting and analyzing multidimensional data with local differential privacy [C]//Proceedings of 2019 IEEE 35th International Conference on Data Engineering. IEEE, 2019: 638–649. DOI: 10.1109/ICDE.2019.00063
DOI
|
21 |
KAGGLE. Ecommerce rating dataset [EB/OL]. [2022-09-20].
|
22 |
KAGGLE. Clothing fit and rating dataset [EB/OL]. [2022-09-20].
|
23 |
WU Y J, CAO X Y, JIA J Y, et al. Poisoning attacks to local differential privacy protocols for key-value data [EB/OL]. (2021-11-22) [2022-09-20].
|