1 |
IETF. Integrated services in the internet architecture: an overview: RFC 1633 [S]. 1994
|
2 |
IETF. An architecture for differentiated services: RFC2475 [S]. 1998
|
3 |
DON W. The history of the IEEE 802 standard [J]. IEEE communications standards magazine, 2018, 2(2): 4. DOI: 10.1109/MCOMSTD.2018.8412452
|
4 |
IETF. Deterministic networking problem statement: RFC8557 [S]. 2019
|
5 |
HE F, ZHAO L, LI E S. Impact analysis of flow shaping in ethernet-AVB/TSN and AFDX from network calculus and simulation perspective [J]. Sensors, 2017, 17(5): 1181. DOI: 10.3390/s17051181
|
6 |
FINZI A, MIFDAOUI A, FRANCES F, et al. Incorporating TSN/BLS in AFDX for mixed-criticality applications: model and timing analysis [C]//Proc. 14th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE, 2018: 1–10. DOI: 10.1109/WFCS.2018.8402346
|
7 |
ZHAO L X, POP P, STEINHORST S. Quantitative performance comparison of various traffic shapers in time-sensitive networking [J]. IEEE transactions on network and service management, 2022, 19(3): 2899–2928. DOI: 10.1109/TNSM.2022.3180160
|
8 |
SPECHT J, SAMII S. Urgency-based scheduler for time-sensitive switched Ethernet networks [C]//Proc. 28th Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 2016: 75–85. DOI: 10.1109/ECRTS.2016.27
|
9 |
LE BOUDEC J Y. A theory of traffic regulators for deterministic networks with application to interleaved regulators [J]. IEEE/ACM transactions on networking, 2018, 26(6): 2721–2733. DOI: 10.1109/TNET.2018.2875191
|
10 |
MOHAMMADPOUR E, STAI E, MOHIUDDIN M, et al. Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping [C]//Proc. 30th International Teletraffic Congress (ITC 30. IEEE, 2018: 1–6
|
11 |
JIANG Y M. Some properties of length rate quotient shapers [EB/OL]. (2021-07-11)[2023-10-13].
|
12 |
JIANG Y M. A basic result on the superposition of arrival processes in deterministic networks [C]//Proc. IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 1–6. DOI: 10.1109/GLOCOM.2018.8647202
|
13 |
CRUZ R L. A calculus for network delay. part I: network elements in isolation [J]. IEEE transactions on information theory, 1991, 37(1): 114–131. DOI: 10.1109/18.61109
|
14 |
CRUZ R L. A calculus for network delay, part II: network analysis [J]. IEEE transactions on information theory, 1991, 37(1): 132–141. DOI: 10.1109/18.61110
|
15 |
PAREKH A K, GALLAGER R G. A generalized processor sharing approach to flow control in integrated services networks: the single-node case [J]. IEEE/ACM transactions on networking, 1993, 1(3): 344–357. DOI: 10.1109/90.234856
|
16 |
PAREKH A K, GALLAGER R G. A generalized processor sharing approach to flow control in integrated services networks: the multiple node case [J]. IEEE/ACM transactions on networking, 1994, 2(2):137–150. DOI: 10.1109/90.234856
|
17 |
CRUZ R L. Quality of service guarantees in virtual circuit switched networks [J]. IEEE journal on selected areas in communications, 1995, 13(6): 1048–1056. DOI: 10.1109/49.400660
|
18 |
SARIOWAN H, CRUZ R L, POLYZOS G C. Scheduling for quality of service guarantees via service curves [C]//Proc. Fourth International Conference on Computer Communications and Networks. IEEE, 1995: 512–520. DOI: 10.1109/ICCCN.1995.540168
|
19 |
AGRAWAL R, RAJAN R. Performance bounds for guaranteed and adaptive services: IBM Technical Report RC 20649 [R]. 1996
|
20 |
CRUZ R L. SCED: efficient management of quality of service guarantees [C]//Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE, 1998: 625–634. DOI: 10.1109/INFCOM.1998.665083
|
21 |
LE BOUDEC J Y. Application of network calculus to guaranteed service networks [J]. IEEE transactions on information theory, 1998, 44(3): 1087–1096. DOI: 10.1109/18.669170
|
22 |
CHANG C S. On deterministic traffic regulation and service guarantees: a systematic approach by filtering [J]. IEEE transactions on information theory, 1998, 44(3): 1097–1110. DOI: 10.1109/18.669173
|
23 |
AGRAWAL R, CRUZ R L, OKINO C, et al. Performance bounds for flow control protocols [J]. IEEE/ACM transactions on networking, 1999, 7(3): 310–323. DOI: 10.1109/90.779197
|
24 |
FIDLER M. Survey of deterministic and stochastic service curve models in the network calculus [J]. IEEE communications surveys & tutorials, 2010, 12(1): 59–86. DOI: 10.1109/SURV.2010.020110.00019
|
25 |
LE BOUDEC J Y, THIRAN P. Network calculus: a theory of deterministic queuing systems for the Internet [M]. Berlin: Springer, 2001
|
26 |
STILIADIS D, VARMA A. Latency-rate servers: a general model for analysis of traffic scheduling algorithms [J]. IEEE/ACM transactions on networking, 1998, 6(5): 611–624. DOI: 10.1109/90.731196
|
27 |
JIANG Y M, LIU Y. Stochastic network calculus [M]. London: Springer, 2008
|
28 |
BURCHARD A, LIEBEHERR J. A general per-flow service curve for GPS [C]//Proc. 30th International Teletraffic Congress (ITC 30. IEEE, 2018: 31–36
|
29 |
NAGLE J. On packet switches with infinite storage [J]. IEEE transactions on communications, 1987, 35(4): 435–438. DOI: 10.1109/TCOM.1987.1096782
|
30 |
KATEVENIS M, SIDIROPOULOS S, COURCOUBETIS C. Weighted round-robin cell multiplexing in a general-purpose ATM switch chip [J]. IEEE journal on selected areas in communications, 1991, 9(8): 1265–1279. DOI: 10.1109/49.105173
|
31 |
SHREEDHAR M, VARGHESE G. Efficient fair queuing using deficit round-robin [J]. IEEE/ACM transactions on networking, 1996, 4(3): 375–385. DOI: 10.1109/90.502236
|
32 |
BOUILLARD A, BOYER M, LE CORRONC E. Deterministic network calculus: from theory to practical implementation [M]. Hoboken: Wiley, 2018. DOI: 10.1002/9781119440284
|
33 |
TABATABAEE S M, LE BOUDEC J Y, BOYER M. Interleaved weighted round-robin: a network calculus analysis [J]. IEICE Transactions on Communications, 2021, 104(12): 1479–1493. 10.1587/TRANSCOM.2021ITI0001
|
34 |
KANHERE S S, SETHU H. On the latency bound of deficit round robin [C]//Proc. Eleventh International Conference on Computer Communications and Networks. IEEE, 2002: 548–553. DOI: 10.1109/ICCCN.2002.1043123 .
|
35 |
LENZINI L, MINGOZZI E, STEA G. Full exploitation of the deficit round Robin capabilities by efficient implementation and parameter tuning [R]. 2003
|
36 |
BOYER M, STEA G, MANGOUA SOFACK W. Deficit round robin with network calculus [C]//Proc. 6th International Conference on Performance Evaluation Methodologies and Tools. IEEE, 2012: 138–147. DOI: 10.4108/valuetools.2012.250202
|
37 |
BOUILLARD A. Individual service curves for bandwidth-sharing policies using network calculus [J]. IEEE networking letters, 2021, 3(2): 80–83. DOI: 10.1109/LNET.2021.3067766
|
38 |
TABATABAEE S M, LE BOUDEC J Y. Deficit round-robin: a second network calculus analysis [J]. IEEE/ACM transactions on networking, 2022, 30(5): 2216–2230. DOI: 10.1109/TNET.2022.3164772
|
39 |
CONSTANTIN V C, NIKOLAUS P, SCHMITT J. Improving performance bounds for weighted round-robin schedulers under constrained cross-traffic [C]//Proc. IFIP Networking Conference (IFIP Networking). IEEE, 2022: 1–9
|
40 |
IEEE. IEEE standard for local and metropolitan area networks: bridges and bridged networks: amendment 29: cyclic queuing and forwarding: 802.1Qch-2017 [S]. 2017
|
41 |
YIN S W, WANG S, HUANG T. Analysis and optimization of queues based on network calculus in time-sensitive networking [J]. ZTE technology journal, 2022, 28(1): 21–28. DOI:10.12142/ZTETJ.202201007
|
42 |
WANDELER E, THIELE L. Optimal TDMA time slot and cycle length allocation for hard real-time systems [C]//Proc. Asia and South Pacific Conference on Design Automation. IEEE, 2006: 479–484. DOI: 10.1109/ASPDAC.2006.1594731
|
43 |
IEEE. IEEE standard for local and metropolitan area networks: bridges and bridged networks: amendment 25: enhancements for scheduled traffic: 802.1Qbv-2015 [S]. 2015
|
44 |
IEEE. IEEE standard for local and metropolitan area networks: bridges and bridged networks: amendment 26: frame preemption: 802.1Qbu-2016 [S]. 2016
|
45 |
ZHAO L X, POP P, CRACIUNAS S S. Worst-case latency analysis for IEEE 802.1Qbv time sensitive networks using network calculus [J]. IEEE access, 2018, 6: 41803–41815. DOI: 10.1109/ACCESS.2018.2858767
|
46 |
IEEE. IEEE standard for local and metropolitan area networks: virtual bridged local area networks amendment 12: forwarding and queuing enhancements for time-sensitive streams: 802.1Qav [S]. 2009
|
47 |
DE AZUA J A R, BOYER M. Complete modelling of AVB in Network Calculus Framework [C]//Proc. 22nd International Conference on Real-Time Networks and Systems. ACM, 2014: 55–64. DOI: 10.1145/2659787.2659810
|
48 |
ZHAO L, HE F, LI E S, et al. Improving worst-case delay analysis for traffic of additional stream reservation class in ethernet-AVB network [J]. Sensors, 2018, 18(11): 3849. DOI: 10.3390/s18113849
|
49 |
ZHAO L X, POP P, ZHENG Z, et al. Timing analysis of AVB traffic in TSN networks using network calculus [C]//Proc. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2018: 25–36. DOI: 10.1109/RTAS.2018.00009
|
50 |
ZHAO L X, POP P, ZHENG Z, et al. Latency analysis of multiple classes of AVB traffic in TSN with standard credit behavior using network calculus [J]. IEEE transactions on industrial electronics, 2020, 68(10): 10291–10302. DOI: 10.1109/TIE.2020.3021638
|
51 |
IEEE. IEEE standard for local and metropolitan area networks-bridges and bridged networks amendment 34: asynchronous traffic shaping: 802.1 Qcr-2020 [S]. 2020
|