ZTE Communications ›› 2023, Vol. 21 ›› Issue (3): 3-10.DOI: 10.12142/ZTECOM.202303002
• Special Topic • Previous Articles Next Articles
Received:
2023-06-08
Online:
2023-09-21
Published:
2023-09-21
About author:
REN Min received her BS degree from the School of Mathematics and Information, China West Normal University in 2021. She is currently working toward an MS degree at Southwest Jiaotong University, China. Her research interests include reinforcement learning and its application and data mining.|XU Renyu (REN Min, XU Renyu, ZHU Ting. Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface[J]. ZTE Communications, 2023, 21(3): 3-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202303002
Figure 2 (a) Classical dataset and (b) BCI Competition IV-2a (BCI-2a) dataset are set to a center-out task. The center is located at the origin (0,0), represented by a green square, and each class target is a purple circle
Figure 4 Learning curves of double deep Q-network (DDQN) on (a) Classical (CLA) dataset and (b) BCI competition IV-2a EEG data (BCI-2a) dataset, where each color represents the average success rate of 10 Monte Carlo trials
Figure 5 The generalizability of DDQN is compared with other classical algorithms for decoding based on Feature 1 (left) and Feature 2 (right) on the (a)(b)BCI-2a dataset and (c)(d) Classical (CLA) dataset, respectively
1 |
WILLETT F R, AVANSINO D T, HOCHBERG L R, et al. High-performance brain-to-text communication via handwriting [J]. Nature, 2021, 593(7858): 249–254. DOI: 10.1038/s41586-021-03506-2
DOI URL |
2 |
CRUZ A, PIRES G, LOPES A, et al. A self-paced BCI with a collaborative controller for highly reliable wheelchair driving: experimental tests with physically disabled individuals [J]. IEEE transactions on human-machine systems, 2021, 51(2): 109–119. DOI: 10.1109/THMS.2020.3047597
DOI URL |
3 |
SCHWARZ A, HÖLLER M K, PEREIRA J, et al. Decoding hand movements from human EEG to control a robotic arm in a simulation environment [J]. Journal of neural engineering, 2020, 17(3): 036010. DOI: 10.1088/1741-2552/ab882e
DOI URL |
4 |
SONG Y H, WU W F, LIN C Q, et al. Assistive mobile robot with shared control of brain-machine interface and computer vision [C]//4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2020: 405–409. DOI: 10.1109/ITNEC48623.2020.9085096
DOI URL |
5 |
ANG K K, CHIN Z Y, WANG C C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b [J]. Frontiers in neuroscience, 2012, 6: 39. DOI: 10.3389/fnins.2012.00039
DOI URL |
6 |
TONIN L, CARLSON T, LEEB R, et al. Brain-controlled telepresence robot by motor-disabled people [C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011: 4227–4230. DOI: 10.1109/IEMBS.2011.6091049
DOI URL |
7 |
GROSSE-WENTRUP M, BUSS M. Multiclass common spatial patterns and information theoretic feature extraction [J]. IEEE transactions on biomedical engineering, 2008, 55(8): 1991–2000. DOI: 10.1109/TBME.2008.921154
DOI URL |
8 |
JIN J, XIAO R, DALY I, et al. Internal feature selection method of CSP based on L1-norm and Dempster⁃Shafer theory [J]. IEEE transactions on neural networks and learning systems, 2020, 32(11): 4814–4825. DOI: 10.1109/TNNLS.2020.3015505
DOI URL |
9 |
JIN J, MIAO Y, DALY I, et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI [J]. Neural networks, 2019, 118: 262–270. DOI: 10.1016/j.neunet.2019.07.008
DOI URL |
10 |
FU R R, TIAN Y S, BAO T T, et al. Improvement motor imagery EEG classification based on regularized linear discriminant analysis [J]. Journal of medical systems, 2019, 43(6): 169. DOI: 10.1007/s10916-019-1270-0
DOI URL |
11 |
LIU Y X, ZHOU W D, YUAN Q, et al. Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG [J]. IEEE transactions on neural systems and rehabilitation engineering, 2012, 20(6): 749–755. DOI: 10.1109/TNSRE.2012.2206054
DOI URL |
12 |
SAMUEL O W, GENG Y J, LI X X, et al. Towards efficient decoding of multiple classes of motor imagery limb movements based on EEG spectral and time domain descriptors [J]. Journal of medical systems, 2017, 41(12): 194. DOI: 10.1007/s10916-017-0843-z
DOI URL |
13 |
LIN C T, CHUANG C H, HUNG Y C, et al. A driving performance forecasting system based on brain dynamic state analysis using 4-D convolutional neural networks [J]. IEEE transactions on cybernetics, 2021, 51(10): 4959–4967. DOI: 10.1109/TCYB.2020.3010805
DOI URL |
14 |
AMIN S U, ALSULAIMAN M, MUHAMMAD G, et al. Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion [J]. Future generation computer systems, 2019, 101: 542–554. DOI: 10.1016/j.future.2019.06.027
DOI URL |
15 |
TAYLOR D M, TILLERY S I H, SCHWARTZ A B. Direct cortical control of 3D neuroprosthetic devices [J]. Science, 2002, 296(5574): 1829–1832. DOI: 10.1126/science.1070291
DOI URL |
16 |
GAGE G J, LUDWIG K A, OTTO K J, et al. Naïve coadaptive cortical control [J]. Journal of neural engineering, 2005, 2(2): 52–63. DOI: 10.1088/1741-2560/2/2/006
DOI URL |
17 |
VELLISTE M, PEREL S, SPALDING M C, et al. Cortical control of a prosthetic arm for self-feeding [J]. Nature, 2008, 453(7198): 1098–1101. DOI: 10.1038/nature06996
DOI URL |
18 | SUTTON R S, BARTO A G. Reinforcement learning: an introduction [M]. Cambridge, USA: MIT press, 2018 |
19 |
DIGIOVANNA J, MAHMOUDI B, FORTES J, et al. Coadaptive brain: machine interface via reinforcement learning [J]. IEEE transactions on biomedical engineering, 2009, 56(1): 54–64. DOI: 10.1109/TBME.2008.926699
DOI URL |
20 |
ITURRATE I, MONTESANO L, MINGUEZ J. Robot reinforcement learning using EEG-based reward signals [C]//IEEE International Conference on Robotics and Automation. IEEE, 2010: 4822–4829. DOI: 10.1109/ROBOT.2010.5509734
DOI URL |
21 |
MATSUZAKI S, SHIINA Y, WADA Y. Adaptive classification for brain-machine interface with reinforcement learning [C]//18th International Conference on Neural Information Processing. ICONIP, 2011: 360–369. DOI: 10.1007/978-3-642-24955-6_44
DOI URL |
22 |
MAHMOUDI B, SANCHEZ J C. A symbiotic brain-machine interface through value-based decision making [J]. PLoS one, 2011, 6(3): e14760. DOI: 10.1371/journal.pone.0014760
DOI URL |
23 |
SANCHEZ J C, TARIGOPPULA A, CHOI J S, et al. Control of a center-out reaching task using a reinforcement learning brain-machine interface [C]//5th International IEEE/EMBS Conference on Neural Engineering. IEEE, 2011: 525–528. DOI: 10.1109/NER.2011.5910601
DOI URL |
24 |
POHLMEYER E A, MAHMOUDI B, GENG S J, et al. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization [J]. PLoS one, 2014, 9(1): e87253. DOI: 10.1371/journal.pone.0087253
DOI URL |
25 |
MARSH B T, TARIGOPPULA V S A, CHEN C, et al. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning [J]. Journal of neuroscience, 2015, 35(19): 7374–7387. DOI: 10.1523/jneurosci.1802-14.2015
DOI URL |
26 |
BAE J, CHHATBAR P, FRANCIS J T, et al. Reinforcement learning via kernel temporal difference [C]//Annual International Conference of IEEE Engineering in Medicine and Biology Society. IEEE, 2011: 5662–5665. DOI: 10.1109/IEMBS.2011.6091370
DOI URL |
27 |
THAPA B R, TANGARIFE D R, BAE J. Kernel temporal differences for EEG-based reinforcement learning brain machine interfaces [C]//44th Annual International Conference of IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022: 3327–3333. DOI: 10.1109/EMBC48229.2022.9871862
DOI URL |
28 |
VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double Q-learning [C]//AAAI Conference on Artificial Intelligence. ACM, 2016: 2094–2100. DOI: 10.5555/3016100.3016191
DOI URL |
29 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning [C]//NIPS Deep Learning Workshop. NIPS, 2013. DOI: 10.48550/arXiv.1312.5602
DOI URL |
30 |
KAYA M, BINLI M K, OZBAY E, et al. A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces [J]. Scientific data, 2018, 5(1): 1–16. DOI: 10.1038/sdata.2018.211
DOI URL |
31 |
TANGERMANN M, MÜLLER K R, AERTSEN A, et al. Review of the BCI competition IV [J]. Frontiers in neuroscience, 2012, 6: 55. DOI: 10.3389/fnins.2012.00055
DOI URL |
32 |
QI F, WANG W, XIE X, et al. Single-trial eeg classification via orthogonal wavelet decomposition-based feature extraction [J]. Frontiers in Neuroscience, 2021, 15: 715855. DOI: 10.3389/fnins.2021.715855
DOI URL |
33 |
MUSALLAM Y K, ALFASSAM N I, MUHAMMAD G, et al. Electroencephalography-based motor imagery classification using temporal convolutional network fusion [J]. Biomedical signal processing and control, 2021, 69: 102826. DOI: 10.1016/j.bspc.2021.102826
DOI URL |
34 |
KEERTHI KRISHNAN K, SOMAN K P. CNN based classification of motor imaginary using variational mode decomposed EEG-spectrum image [J]. Biomedical engineering letters, 2021, 11(3): 235–247. DOI: 10.1007/s13534-021-00190-z
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||