ZTE Communications ›› 2022, Vol. 20 ›› Issue (2): 19-27.DOI: 10.12142/ZTECOM.202202004
• Special Topic • Previous Articles Next Articles
SUN Shuyi, WEN Geyi
Received:
2022-04-18
Online:
2022-06-25
Published:
2022-05-24
About author:
SUN Shuyi received the BS degree in information and communication engineering from Nanjing University of Information Science and Technology, China in 2020. Her research interest mainly focuses on antenna design.|WEN Geyi (wgy@nuist. edu.cn) is a National Distinguished Professor with the Nanjing University of Information Science and Technology, China and the Director of the Research Center of Applied Electromagnetics. He is the author of the Foundations for Radio Frequency Engineering, the Foundations of Applied Electrodynamics (Wiley, 2010), the Advanced Electromagnetic Field Theory (in Chinese, National Defense Publishing House, 1999), and the Modern Methods for Electromagnetic Computations (in Chinese, Henan Science and Technology Press, 1994). He is an IEEE Fellow.
Supported by:
SUN Shuyi, WEN Geyi. Optimal Design of Wireless Power Transmission Systems Using Antenna Arrays[J]. ZTE Communications, 2022, 20(2): 19-27.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202202004
Parameter | w1 | w2 | w3 | w4 | w5 |
---|---|---|---|---|---|
CMMPTE | 1.220 7 | 0.9 | 1.184 | 0.838 | 1.206 |
WMMPTE | 0.9 | 0.1 | 0.89 | 1 | 0.95 |
Table 1 Weights for CMMPTE and WMMPTE
Parameter | w1 | w2 | w3 | w4 | w5 |
---|---|---|---|---|---|
CMMPTE | 1.220 7 | 0.9 | 1.184 | 0.838 | 1.206 |
WMMPTE | 0.9 | 0.1 | 0.89 | 1 | 0.95 |
Port Number | 37 | 38 | 39 | 40 | 41 |
---|---|---|---|---|---|
UMMPTE | 0.14∠9 | 0.58∠146 | 0.38∠1 | 0.66∠144 | 0.23∠0 |
WMMPTE | 0.44∠-29 | 0.44∠-149 | 0.44∠14 | 0.44∠-140 | 0.44∠0 |
CMMPTE | 0.44∠0 | 0.44∠0 | 0.44∠0 | 0.44∠0 | 0.44∠0 |
Table 2 Optimized distribution of excitations for Rx arrays
Port Number | 37 | 38 | 39 | 40 | 41 |
---|---|---|---|---|---|
UMMPTE | 0.14∠9 | 0.58∠146 | 0.38∠1 | 0.66∠144 | 0.23∠0 |
WMMPTE | 0.44∠-29 | 0.44∠-149 | 0.44∠14 | 0.44∠-140 | 0.44∠0 |
CMMPTE | 0.44∠0 | 0.44∠0 | 0.44∠0 | 0.44∠0 | 0.44∠0 |
Port Number | UMMPTE | WMMPTE | CMMPTE |
---|---|---|---|
1 | 0.10∠-2 | 0.22∠-37 | 0.14∠49 |
2 | 0.13∠26 | 0.19∠4 | 0.07∠87 |
3 | 0.07∠81 | 0.11∠78 | 0.05∠-107 |
4 | 0.04∠-127 | 0.10∠-137 | 0.11∠-31 |
5 | 0.06∠19 | 0.04∠5 | 0.01∠-103 |
6 | 0.07∠128 | 0.09∠147 | 0.05∠-87 |
7 | 0.16∠-66 | 0.24∠-23 | 0.33∠120 |
8 | 0.15∠-60 | 0.19∠-7 | 0.29∠145 |
9 | 0.04∠36 | 0.12∠102 | 0.19∠-142 |
10 | 0.08∠168 | 0.09∠-176 | 0.02∠-17 |
11 | 0.08∠-83 | 0.08∠-15 | 0.13∠131 |
12 | 0.07∠10 | 0.07∠41 | 0.01∠-170 |
13 | 0.29∠-168 | 0.15∠-167 | 0.16∠114 |
14 | 0.19∠-162 | 0.14∠-166 | 0.04∠164 |
15 | 0.10∠-16 | 0.04∠-1 | 0.07∠-68 |
16 | 0.13∠62 | 0.07∠26 | 0.16∠24 |
17 | 0.09∠163 | 0.07∠148 | 0.06∠-4 |
18 | 0.07∠-130 | 0.10∠-118 | 0.09∠-29 |
19 | 0.26∠157 | 0.28∠172 | 0.13∠101 |
20 | 0.08∠-142 | 0.14∠-159 | 0.15∠-68 |
21 | 0.23∠-61 | 0.22∠-60 | 0.11∠-138 |
22 | 0.11∠-30 | 0.07∠-16 | 0.07∠-79 |
23 | 0.05∠41 | 0.13∠125 | 0.19∠-138 |
24 | 0.11∠89 | 0.12∠106 | 0.04∠-138 |
25 | 0.18∠-34 | 0.19∠2 | 0.25∠118 |
26 | 0.20∠-46 | 0.19∠11 | 0.38∠154 |
27 | 0.11∠-144 | 0.07∠-154 | 0.14∠-165 |
28 | 0.21∠-161 | 0.15∠-169 | 0.05∠152 |
29 | 0.15∠-55 | 0.13∠10 | 0.26∠146 |
30 | 0.16∠21 | 0.21∠23 | 0.09∠87 |
31 | 0.32∠-10 | 0.30∠13 | 0.10∠38 |
32 | 0.19∠-40 | 0.20∠16 | 0.26∠119 |
33 | 0.29∠166 | 0.25∠179 | 0.09∠103 |
34 | 0.31∠-170 | 0.19∠-162 | 0.14∠116 |
35 | 0.20∠-64 | 0.24∠-4 | 0.33∠121 |
36 | 0.17∠0 | 0.24∠0 | 0.16∠57 |
Table 3 Optimized distribution of the excitations for Tx arrays
Port Number | UMMPTE | WMMPTE | CMMPTE |
---|---|---|---|
1 | 0.10∠-2 | 0.22∠-37 | 0.14∠49 |
2 | 0.13∠26 | 0.19∠4 | 0.07∠87 |
3 | 0.07∠81 | 0.11∠78 | 0.05∠-107 |
4 | 0.04∠-127 | 0.10∠-137 | 0.11∠-31 |
5 | 0.06∠19 | 0.04∠5 | 0.01∠-103 |
6 | 0.07∠128 | 0.09∠147 | 0.05∠-87 |
7 | 0.16∠-66 | 0.24∠-23 | 0.33∠120 |
8 | 0.15∠-60 | 0.19∠-7 | 0.29∠145 |
9 | 0.04∠36 | 0.12∠102 | 0.19∠-142 |
10 | 0.08∠168 | 0.09∠-176 | 0.02∠-17 |
11 | 0.08∠-83 | 0.08∠-15 | 0.13∠131 |
12 | 0.07∠10 | 0.07∠41 | 0.01∠-170 |
13 | 0.29∠-168 | 0.15∠-167 | 0.16∠114 |
14 | 0.19∠-162 | 0.14∠-166 | 0.04∠164 |
15 | 0.10∠-16 | 0.04∠-1 | 0.07∠-68 |
16 | 0.13∠62 | 0.07∠26 | 0.16∠24 |
17 | 0.09∠163 | 0.07∠148 | 0.06∠-4 |
18 | 0.07∠-130 | 0.10∠-118 | 0.09∠-29 |
19 | 0.26∠157 | 0.28∠172 | 0.13∠101 |
20 | 0.08∠-142 | 0.14∠-159 | 0.15∠-68 |
21 | 0.23∠-61 | 0.22∠-60 | 0.11∠-138 |
22 | 0.11∠-30 | 0.07∠-16 | 0.07∠-79 |
23 | 0.05∠41 | 0.13∠125 | 0.19∠-138 |
24 | 0.11∠89 | 0.12∠106 | 0.04∠-138 |
25 | 0.18∠-34 | 0.19∠2 | 0.25∠118 |
26 | 0.20∠-46 | 0.19∠11 | 0.38∠154 |
27 | 0.11∠-144 | 0.07∠-154 | 0.14∠-165 |
28 | 0.21∠-161 | 0.15∠-169 | 0.05∠152 |
29 | 0.15∠-55 | 0.13∠10 | 0.26∠146 |
30 | 0.16∠21 | 0.21∠23 | 0.09∠87 |
31 | 0.32∠-10 | 0.30∠13 | 0.10∠38 |
32 | 0.19∠-40 | 0.20∠16 | 0.26∠119 |
33 | 0.29∠166 | 0.25∠179 | 0.09∠103 |
34 | 0.31∠-170 | 0.19∠-162 | 0.14∠116 |
35 | 0.20∠-64 | 0.24∠-4 | 0.33∠121 |
36 | 0.17∠0 | 0.24∠0 | 0.16∠57 |
Port Number | 37/dBm | 38/dBm | 39/dBm | 40/dBm | 41/dBm |
---|---|---|---|---|---|
UMMPTE | 7.2 | 17.8 | 14.9 | 19.6 | 11.3 |
WMPTE | 14.7 | 14.9 | 14.6 | 14.8 | 14.4 |
CMMPTE | 13.5 | 13.4 | 13.5 | 13.2 | 12.8 |
Table 4 Received power distributions at spots where the receiving antennas are positioned
Port Number | 37/dBm | 38/dBm | 39/dBm | 40/dBm | 41/dBm |
---|---|---|---|---|---|
UMMPTE | 7.2 | 17.8 | 14.9 | 19.6 | 11.3 |
WMPTE | 14.7 | 14.9 | 14.6 | 14.8 | 14.4 |
CMMPTE | 13.5 | 13.4 | 13.5 | 13.2 | 12.8 |
Methods | Simulated PTE/% | Measured PTE/% |
---|---|---|
UMMPTE | 22.4 | 21.8 |
WMMPTE | 15.1 | 14.8 |
CMMPTE | 11.4 | 10.7 |
Uniform distribution | 2.5 | 2.2 |
Table 5 Comparison of PTEs
Methods | Simulated PTE/% | Measured PTE/% |
---|---|---|
UMMPTE | 22.4 | 21.8 |
WMMPTE | 15.1 | 14.8 |
CMMPTE | 11.4 | 10.7 |
Uniform distribution | 2.5 | 2.2 |
1 |
BROWN W C. The history of power transmission by radio waves [J]. IEEE transactions on microwave theory and techniques, 1984, 32(9): 1230–1242. DOI: 10.1109/TMTT.1984.1132833
DOI |
2 | SHINOHARA N. Wireless power transfer via radiowaves [M]. New York, USA: John Wiley & Sons, 2014 |
3 |
OKRESS E C, BROWN W, MORENO T. Microwave power engineering [J]. IEEE Spectrum, 1964, 1(10): 76–76. doi: 10.1109/MSPEC.1964.6501190
DOI |
4 |
SHINOHARA N. Development of high efficient phased array for microwave power transmission of Space Solar Power Satellite/Station [C]//Proceedings of 2010 IEEE Antennas and Propagation Society International Symposium. IEEE, 2010: 1–4. DOI: 10.1109/APS.2010.5562088
DOI |
5 |
MASSA A, OLIVERI G, VIANI F, et al. Array designs for long‑distance wireless power transmission: state‑of‑the‑art and innovative solutions [J]. Proceedings of the IEEE, 2013, 101(6): 1464–1481. DOI: 10.1109/JPROC.2013.2245491
DOI |
6 |
NGUYEN P T, ABBOSH A M, CROZIER S. 3‑D focused microwave hyperthermia for breast cancer treatment with experimental validation [J]. IEEE transactions on antennas and propagation, 2017, 65(7): 3489–3500. DOI: 10.1109/TAP.2017.2700164
DOI |
7 |
CHOW E Y, YANG C L, OUYANG Y H, et al. Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors [J]. IEEE transactions on antennas and propagation, 2011, 59(6): 2379–2387. DOI: 10.1109/TAP.2011.2144551
DOI |
8 |
LI S Q, MI C C. Wireless power transfer for electric vehicle applications [J]. IEEE journal of emerging and selected topics in power electronics, 2015, 3(1): 4–17. DOI: 10.1109/jestpe.2014.2319453
DOI |
9 |
LI X, DUAN B Y, SONG L W. Design of clustered planar arrays for microwave wireless power transmission [J]. IEEE transactions on antennas and propagation, 2019, 67(1): 606–611. DOI: 10.1109/TAP.2018.2876192
DOI |
10 |
LI X, LUK K M, DUAN B Y. Multiobjective optimal antenna synthesis for microwave wireless power transmission [J]. IEEE transactions on antennas and propagation, 2019, 67(4): 2739–2744. DOI: 10.1109/TAP.2019.2893312
DOI |
11 |
GOWDA V R, YURDUSEVEN O, LIPWORTH G, et al. Wireless power transfer in the radiative near field [J]. IEEE antennas and wireless propagation letters, 2016, 15: 1865–1868. DOI: 10.1109/LAWP.2016.2542138
DOI |
12 |
YI X J, CHEN X, ZHOU L, et al. A microwave power transmission experiment based on the near‑field focused transmitter [J]. IEEE antennas and wireless propagation letters, 2019, 18(6): 1105–1108. DOI: 10.1109/lawp.2019.2910200
DOI |
13 |
MOSK A P, LAGENDIJK A, LEROSEY G, et al. Controlling waves in space and time for imaging and focusing in complex media [J]. Nature photonics, 2012, 6 (5): 283–292. DOI: 10.1038/nphoton.2012.88
DOI |
14 |
PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780–1782. DOI: 10.1126/science.1125907
DOI |
15 |
CHENG Y J, XUE F. Ka‑band near‑field‑focused array antenna with variable focal point [J]. IEEE transactions on antennas and propagation, 2016, 64(5): 1725–1732. DOI: 10.1109/tap.2016.2540646
DOI |
16 |
ZHAO D S, ZHU M. Generating microwave spatial fields with arbitrary patterns [J]. IEEE antennas and wireless propagation letters, 2016, 15: 1739–1742. DOI: 10.1109/LAWP.2016.2530825
DOI |
17 |
HUANG Z X, CHENG Y J. Near‑field pattern synthesis for sparse focusing antenna arrays based on Bayesian compressive sensing and convex optimization [J]. IEEE transactions on antennas and propagation, 2018, 66(10): 5249–5257. DOI: 10.1109/TAP.2018.2860044
DOI |
18 |
CHOU H T, HUNG K L, CHOU H H. Design of periodic antenna arrays with the excitation phases synthesized for optimum near‑field patterns via steepest descent method [J]. IEEE transactions on antennas and propagation, 2011, 59(11): 4342–4345. DOI: 10.1109/TAP.2011.2164221
DOI |
19 |
WEN G Y. Foundations of Applied Electrodynamics [M]. Chichester, UK: John Wiley & Sons, 2010. DOI: 10.1002/9780470661369
DOI |
20 |
WEN G Y. Foundations for radio frequency engineering [M]. Singapore: World Scientific, 2013. DOI: 10.1142/9040
DOI |
21 |
WEN G Y. The method of maximum power transmission efficiency for the design of antenna arrays [J]. IEEE open journal of antennas and propagation, 2021, 2: 412–430. DOI: 10.1109/OJAP.2021.3066310
DOI |
22 |
WANG X Y, YANG G M, WEN G Y. A new design of focused antenna arrays [J]. Microwave and optical technology letters, 2014, 56(10): 2464–2468. DOI: 10.1002/mop.28616
DOI |
23 |
LONG S, WEN G Y. Optimal design of focused antenna arrays [J]. IEEE transactions on antennas and propagation, 2014, 62(11): 5565–5571. DOI: 10.1109/tap.2014.2357421
DOI |
24 |
JIANG Y H, WEN G Y, YANG L S, et al. Circularly‑polarized focused microstrip antenna arrays [J]. IEEE antennas and wireless propagation letters, 2015, 15: 52–55. DOI: 10.1109/LAWP.2015.2428931
DOI |
25 |
HE X P, WEN G Y, WANG S Y. Optimal design of focused arrays for microwave‑induced hyperthermia [J]. IET microwaves, antennas & propagation, 2015, 9(14): 1605–1611. DOI: 10.1049/iet-map.2014.0696
DOI |
26 |
HE X P, WEN G Y, WANG S Y. A hexagonal focused array for microwave hyperthermia: Optimal design and experiment [J]. IEEE antennas and wireless propagation letters, 2016, 15: 56–59. DOI: 10.1109/LAWP.2015.2429596
DOI |
27 |
TONG H P, WEN G Y. Optimal design of smart antenna systems for handheld devices [J]. IET microwaves, antennas & propagation, 2016, 10(6): 617–623. DOI: 10.1049/iet-map.2015.0339
DOI |
28 |
WAN W, WEN G Y, GAO S. Optimum design of low‑cost dual‑mode beam‑steerable arrays for customer‑premises equipment applications [J]. IEEE access, 2018, 6: 16092–16098. DOI: 10.1109/ACCESS.2018.2813299
DOI |
29 |
MIAO X B, WAN W, DUAN Z, et al. Design of dual‑mode arc‑shaped dipole arrays for indoor base‑station applications [J]. IEEE antennas and wireless propagation letters, 2019, 18(4): 752–756. DOI: 10.1109/LAWP.2019.2901967
DOI |
30 |
TING L, WEN G Y. Design of MIMO beamforming antenna array for mobile handsets [J]. Progress in electromagnetics research C, 2019, 94: 13–28. DOI: 10.2528/pierc19030807
DOI |
31 |
GUO H D, WEN G Y. Design of bidirectional antenna array with adjustable endfire gains [J]. IEEE antennas and wireless propagation letters, 2019, 18(8): 1656–1660. DOI: 10.1109/LAWP.2019.2926525
DOI |
32 |
YANG X D, WEN G Y, SUN H C. Optimum design of wireless power transmission system using microstrip patch antenna arrays [J]. IEEE antennas and wireless propagation letters, 2017, 16: 1824–1827. DOI: 10.1109/LAWP.2017.2682262
DOI |
33 |
SUN H C, WEN G Y. Optimum design of wireless power transmission systems in unknown electromagnetic environments [J]. IEEE access, 2017, 5: 20198–20206. DOI: 10.1109/ACCESS.2017.2757002
DOI |
34 |
GU X Z, WEN G Y. Design of a near‑field RFID antenna array in metal cabinet environment [J]. IEEE antennas and wireless propagation letters, 2019, 18(1): 79–83. DOI: 10.1109/LAWP.2018.2880965
DOI |
35 |
XIAO C, WEN G Y. An optimization method for the synthesis of flat‑top radiation patterns in the near‑ and far‑field regions [J]. IEEE transactions on antennas and propagation, 2019, 67(2): 980–987. DOI: 10.1109/TAP.2018.2882653
DOI |
36 | WEN G Y. Theoretical study for microwave power transmission [J]. Journal of electronics and information technology, 1998, 20(4): 538–545 |
37 |
KAY A. Near‑field gain of aperture antennas [J]. IRE transactions on antennas and propagation, 1960, 8(6): 586–593. DOI: 10.1109/tap.1960.1144905
DOI |
38 |
BORGIOTTI G. Maximum power transfer between two planar apertures in the Fresnel zone [J]. IEEE transactions on antennas and propagation, 1966, 14(2): 158–163. DOI: 10.1109/TAP.1966.1138660
DOI |
39 |
SHERMAN J W. Properties of focused aperture in the Fresnel region [J]. IRE transactions on antennas and propagation, 1962, 10(4): 399–408. DOI: 10.1109/TAP.1962.1137900
DOI |
40 |
YUAN Q W, AOKI T. Practical applications of universal approach for calculating maximum transfer efficiency of MIMO‑WPT system [J]. Wireless power transfer, 2020, 7(1): 86–94. DOI: 10.1017/wpt.2020.7
DOI |
[1] | LIU Mengyu, ZHANG Yang, JIN Yasheng, ZHI Kangda, PAN Cunhua. Towards Near-Field Communications for 6G: Challenges and Opportunities [J]. ZTE Communications, 2024, 22(1): 3-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||