ZTE Communications ›› 2021, Vol. 19 ›› Issue (3): 22-29.DOI: 10.12142/ZTECOM.202103004
• Special Topic • Previous Articles Next Articles
LIU Haipeng(), ZHANG Xingyue, ZHOU Anfu, LIU Liang, MA Huadong
Received:
2021-06-10
Online:
2021-09-25
Published:
2021-10-11
About author:
LIU Haipeng (Supported by:
LIU Haipeng, ZHANG Xingyue, ZHOU Anfu, LIU Liang, MA Huadong. Indoor Environment and Human Sensing via Millimeter Wave Radio: A Review[J]. ZTE Communications, 2021, 19(3): 22-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202103004
Citation | Usage | Technology | Method |
---|---|---|---|
JADE | Position the client | An iterative algorithm | Both phase and RSS |
CLAM | Map the environment | A distributed localization algorithm | Both phase and RSS |
E-Mi | Boost the indoor network | A multi-path analysis framework | Both phase and RSS |
Beam-Forcast | Improve the mobile links | Reverse engineering of E-Mi | Both phase and RSS |
RSA | Position object & identify materials | Move Rx along trajectory while collecting | Only RSS |
Ulysses | Image environment | Bind Tx & Rx together to collect reflection signals | Only RSS |
RadarCat | Identify plenty of materials | Classification by learning on the radar signals | Only RSS |
mmRanger | Sense environment | Automatically collect signals | RSS with a robot |
miDroid | Improve mobile links | Set a network relay piggybacked on the robot | RSS with a robot |
Table 1 Comparison of the state-of-the-art works on sensing static indoor environment
Citation | Usage | Technology | Method |
---|---|---|---|
JADE | Position the client | An iterative algorithm | Both phase and RSS |
CLAM | Map the environment | A distributed localization algorithm | Both phase and RSS |
E-Mi | Boost the indoor network | A multi-path analysis framework | Both phase and RSS |
Beam-Forcast | Improve the mobile links | Reverse engineering of E-Mi | Both phase and RSS |
RSA | Position object & identify materials | Move Rx along trajectory while collecting | Only RSS |
Ulysses | Image environment | Bind Tx & Rx together to collect reflection signals | Only RSS |
RadarCat | Identify plenty of materials | Classification by learning on the radar signals | Only RSS |
mmRanger | Sense environment | Automatically collect signals | RSS with a robot |
miDroid | Improve mobile links | Set a network relay piggybacked on the robot | RSS with a robot |
Citation | Usage | Equipment | Technology | Whether AI |
---|---|---|---|---|
Deep-soli | Gesture recognition | Soli | Range-Doppler images | Customized CNN |
Ubi-soli | Gesture recognition | Soli | Multiple abstract representations | Random forest |
HCI | Vehicular gesture recognition | Soli | Several physical features | Random forest |
MengZhenGait | Identify different users | TI-IWR1443&6843 | Three spatial features | MmGaitNet |
MmVital | Monitor vital signs | Horn antennas | Extract periodic changes | No |
MTrack | Track a vertical finger | Horn antennas | Combine target’s angle and phase change | No |
MmSense | Multi-human detection | Free | Features of 60 GHz signal | No |
MID | Gesture recognition | Free | MmWave sensing | No |
LowCostGes | Detect gesture | RIC60a | Extract power profile and AoA | No |
MmASL | Home-assistant system | Free | Features of 60 GHz signal | No |
MHomeGes | Smart home-usage | TI-IWR1443 | MmWave sensing | No |
MTranseSee | User recognition | Free | MmWave radar | No |
Pantomime | Gesture recognition | Pantomime | MmWave sensing | No |
MmMesh | Human mesh construction | Free | Deep learning framework | No |
Table 2 Comparison of the state-of-the-art works on sensing dynamic human movements
Citation | Usage | Equipment | Technology | Whether AI |
---|---|---|---|---|
Deep-soli | Gesture recognition | Soli | Range-Doppler images | Customized CNN |
Ubi-soli | Gesture recognition | Soli | Multiple abstract representations | Random forest |
HCI | Vehicular gesture recognition | Soli | Several physical features | Random forest |
MengZhenGait | Identify different users | TI-IWR1443&6843 | Three spatial features | MmGaitNet |
MmVital | Monitor vital signs | Horn antennas | Extract periodic changes | No |
MTrack | Track a vertical finger | Horn antennas | Combine target’s angle and phase change | No |
MmSense | Multi-human detection | Free | Features of 60 GHz signal | No |
MID | Gesture recognition | Free | MmWave sensing | No |
LowCostGes | Detect gesture | RIC60a | Extract power profile and AoA | No |
MmASL | Home-assistant system | Free | Features of 60 GHz signal | No |
MHomeGes | Smart home-usage | TI-IWR1443 | MmWave sensing | No |
MTranseSee | User recognition | Free | MmWave radar | No |
Pantomime | Gesture recognition | Pantomime | MmWave sensing | No |
MmMesh | Human mesh construction | Free | Deep learning framework | No |
AI | Non-AI | |
---|---|---|
Human dynamics | 2,3,5,6 | 1,7,16,20,21,22,23 |
Indoor environment | 8 | 9,11,12,13,14,15,17,18,19 |
Table 3 Existing work and prospect for the future
AI | Non-AI | |
---|---|---|
Human dynamics | 2,3,5,6 | 1,7,16,20,21,22,23 |
Indoor environment | 8 | 9,11,12,13,14,15,17,18,19 |
1 |
ZHU Y Z, ZHU Y B, ZHAO B Y, et al. Reusing 60 GHz radios for mobile radar imaging [C]//The 21st Annual International Conference on Mobile Computing and Networking. Paris, France: ACM, 2015: 103–116. DOI: 10.1145/2789168.2790112
DOI |
2 |
PALACIOS J, CASARI P, WIDMER J. JADE: Zero‑knowledge device localization and environment mapping for millimeter wave systems [C]//IEEE Conference on Computer Communications. Atlanta, USA: IEEE, 2017: 1–9. DOI: 10.1109/INFOCOM.2017.8057183
DOI |
3 |
MENG Z, FU S, YAN J, et al. Gait recognition for co‑existing multiple people using millimeter wave sensing [C]//The AAAI Conference on Artificial Intelligence. New York, USA: AAAI, 2020, 34(01): 849–856. DOI: index.php/AAAI/article/view/5430
DOI |
4 |
WANG S W, SONG J, LIEN J, et al. Interacting with soli: exploring fine‑grained dynamic gesture recognition in the radio‑frequency spectrum [C]//The 29th Annual Symposium on User Interface Software and Technology. Tokyo, Japan: ACM, 2016: 851–860. DOI: 10.1145/2984511.2984565
DOI |
5 |
LIEN J, GILLIAN N, KARAGOZLER M E, et al. Soli: ubiquitous gesture sensing with millimeter wave radar [J]. ACM transactions on graphics, 2016, 35(4): 1–19. DOI: 10.1145/2897824.2925953
DOI |
6 |
WEI T, ZHANG X Y. MTrack: high‑precision passive tracking using millimeter wave radios [C]//The 21st Annual International Conference on Mobile Computing and Networking. Paris, France: ACM, 2015: 117–129. DOI: 10.1145/2789168.2790113
DOI |
7 |
PALACIOS J, BIELSA G, CASARI P, et al. Communication‑driven localization and mapping for millimeter wave networks [C]//IEEE Conference on Computer Communications. Honolulu, USA: IEEE, 2018: 2402–2410. DOI: 10.1109/INFOCOM.2018.8485819
DOI |
8 | WEI T, ZHOU A, ZHANG X. Facilitating robust 60 GHz network deployment by sensing ambient reflectors [C]//14th USENIX Symposium on Networked Systems Design and Implementation. Boston, USA: IEEE, 2017: 213–226 |
9 |
ZHOU A F, ZHANG X Y, MA H D. Beam‑forecast: facilitating mobile 60 GHz networks via model‑driven beam steering [C]//IEEE Conference on Computer Communications. Atlanta, USA: IEEE, 2017: 1–9. DOI:10.1109/INFOCOM.2017.8057188
DOI |
10 |
ZHU Y, YAO Y, ZHAO B Y, et al. Object recognition and navigation using a single networking device [C]//Annual International Conference on Mobile Systems, Applications, and Services. Niagara Falls, USA: ACM, 2017: 265–277. DOI: 10.1145/3081333.3081339
DOI |
11 |
YEO H S, FLAMICH G, SCHREMPF P, et al. RadarCat: radar categorization for input & interaction [C]//The 29th Annual Symposium on User Interface Software and Technology. Tokyo, Japan: ACM, 2016: 833–841.DOI: 10.1145/2984511.2984515
DOI |
12 |
ZHOU A F, YANG S Y, YANG Y, et al. Autonomous environment mapping using commodity millimeter‑wave network device [C]//IEEE Conference on Computer Communications. Paris, France: IEEE, 2019: 1126–1134. DOI:10.1109/INFOCOM.2019.8737624
DOI |
13 |
ZHOU A F, XU S Q, WANG S, et al. Robot navigation in radio beam space: Leveraging robotic intelligence for seamless mmWave network coverage [C]//The 20th ACM International Symposium on Mobile Ad Hoc Networking and Computing. Catania, Italy: ACM, 2019: 161–170. DOI: 10.1145/3323679.3326514
DOI |
14 |
YANG Z C, PATHAK P H, ZENG Y Z, et al. Monitoring vital signs using millimeter wave [C]//Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. Paderborn, Germany: ACM, 2016: 211–220. DOI: 10.1145/2942358.2942381
DOI |
15 |
GU T B, FANG Z, YANG Z C, et al. MmSense: multi‑person detection and identification via mmWave sensing [C]//The 3rd ACM Workshop on Millimeter‑wave Networks and Sensing Systems. Los Cabos, Mexico: ACM, 2019: 45–50. DOI: 10.1145/3349624.3356765
DOI |
16 | LIU H P, BAI X W, GAO H Y, et al. MID: accurate and robust user identification and authentication through hand‑gesture sensing with mmwave radar [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2021. |
17 |
SMITH K A, CSECH C, MURDOCH D, et al. Gesture recognition using mm‑wave sensor for human‑car interface [J]. IEEE sensors letters, 2018, 2(2): 1–4. DOI: 10.1109/LSENS.2018.2810093
DOI |
18 |
PATRA A, GEUER P, MUNARI A, et al. Mm‑wave radar based gesture recognition: development and evaluation of a low‑power, low‑complexity system [C]//The 2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems. New Delhi, India: ACM, 2018: 51–56. DOI: 10.1145/3264492.3264501
DOI |
19 |
LIU H P, WANG Y H, ZHOU A F, et al. Real‑time arm gesture recognition in smart home scenarios via millimeter wave sensing [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2020, 4(4): 140. DOI: 10.1145/3432235
DOI |
20 |
PALIPANA S, SALAMI D, LEIVA L A, et al. Pantomime: mid‑air gesture recognition with sparse millimeter‑wave radar point clouds [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2021, 5(1): 1–27. DOI:10.1145/3448110
DOI |
21 |
SANTHALINGAM P S, HOSAIN A A, ZHANG D, et al. MmASL: environment‑independent asl gesture recognition using 60 GHz millimeter‑wave signals [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2020, 4(1): 1–30. DOI: 10.1145/3381010
DOI |
22 | LIU H P, CUI K N, HU K Y, et al. Environment‑independent mmWave sensing based gesture recognition via transfer learning [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2021 |
23 |
XUE H, JU Y, MIAO C, et al. MmMesh: towards 3D real‑time dynamic human mesh construction using millimeter‑wave [C]//Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services. 2021: 269–282. DOI: 10.1145/3458864.3467679
DOI |
[1] | YU Xiaohui, YU Shucheng, LIU Xiqing, PENG Mugen. On Normalized Least Mean Square Based Interference Cancellation Algorithm for Integrated Sensing and Communication Systems [J]. ZTE Communications, 2024, 22(3): 21-28. |
[2] | FENG Jianxin, PAN Yi, WU Xiao. Building a Stronger Foundation for Web3: Advantages of 5G Infrastructure [J]. ZTE Communications, 2024, 22(2): 3-10. |
[3] | YANG Yibing, LIU Ming, XU Rongtao, WANG Gongpu, GONG Wei. Link Budget and Enhanced Communication Distance for Ambient Internet of Things [J]. ZTE Communications, 2024, 22(1): 16-23. |
[4] | ZHAO Yaqiong, KE Hongqin, XU Wei, YE Xinquan, CHEN Yijian. RIS-Assisted Cell-Free MIMO: A Survey [J]. ZTE Communications, 2024, 22(1): 77-86. |
[5] | LI Hanwen, BI Ningjing, SHA Jin. Design of Raptor-Like LDPC Codes and High Throughput Decoder Towards 100 Gbit/s Throughput [J]. ZTE Communications, 2023, 21(3): 86-92. |
[6] | DING Jianwen, LIU Yao, LIAO Hongjian, SUN Bin, WANG Wei. Statistical Model of Path Loss for Railway 5G Marshalling Yard Scenario [J]. ZTE Communications, 2023, 21(3): 117-122. |
[7] | SHI Xiangyi, HAN Tongzhou, TIAN Hai, ZHAO Danfeng. Design of Raptor-Like Rate Compatible SC-LDPC Codes [J]. ZTE Communications, 2022, 20(S1): 16-21. |
[8] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[9] | HOU Xiaolin, LI Xiang, WANG Xin, CHEN Lan, SUYAMA Satoshi. Some Observations and Thoughts about Reconfigurable Intelligent Surface Application for 5G Evolution and 6G [J]. ZTE Communications, 2022, 20(1): 14-20. |
[10] | YAN Xincheng, TENG Huiyun, PING Li, JIANG Zhihong, ZHOU Na. Study on Security of 5G and Satellite Converged Communication Network [J]. ZTE Communications, 2021, 19(4): 79-89. |
[11] | XIAO Kai, LIU Xing, HAN Xianghui, HAO Peng, ZHANG Junfeng, ZHOU Dong, WEI Xingguang. Flexible Multiplexing Mechanism for Coexistence of URLLC and EMBB Services in 5G Networks [J]. ZTE Communications, 2021, 19(2): 82-90. |
[12] | LIU Zhuang, GAO Yin, LI Dapeng, CHEN Jiajun, HAN Jiren. Enabling Energy Efficiency in 5G Network [J]. ZTE Communications, 2021, 19(1): 20-29. |
[13] | ZHANG Jing, WEI Xiao, CHENG Junfeng, FENG Xu. Satellite E2E Network Slicing Based on 5G Technology [J]. ZTE Communications, 2020, 18(4): 26-33. |
[14] | LI Yezhen, REN Yongli, YANG Fan, XU Shenheng, ZHANG Jiannian. A Novel 28 GHz Phased Array Antenna for 5G Mobile Communications [J]. ZTE Communications, 2020, 18(3): 20-25. |
[15] | CHANG Su-Wei, LIN Chueh-Jen, TSAI Wen-Tsai, HUNG Tzu-Chieh, HUANG Po-Chia. Design of Millimeter-Wave Antenna-in-Package (AiP) for 5G NR [J]. ZTE Communications, 2020, 18(3): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||