ZTE Communications ›› 2019, Vol. 17 ›› Issue (4): 62-71.DOI: 10.12142/ZTECOM.201904009
• Research Paper • Previous Articles Next Articles
HUANG Ziwei1,2, CHENG Xiang1, ZHANG Nan3
Received:
2019-03-17
Online:
2019-12-25
Published:
2020-04-16
About author:
HUANG Ziwei is currently pursuing the Ph. D. degree in signal and information processing with the Modern Communications Research Institute, Peking University, China. His research interests include the channel modeling and wireless communications.|CHENG Xiang (xiangcheng@pku.edu.cn) is currently a Professor at Peking University. His general research interests are in areas of channel modeling, wireless communications and data analytics. He has published more than 200 journal and conference papers, 5 books and 6 patents. Dr. Cheng was the recipient of the IEEE Asia Pacific (AP) Outstanding Young Researcher Award in 2015, the co-recipient for the 2016 IEEE JSAC Best Paper Award: Leonard G. Abraham Prize, the NSFC Outstanding Young Investigator Award, the both First-Rank and Second-Rank Award in Natural Science, Ministry of Education in China. He has also received the Best Paper Awards at IEEE ITST’12, ICCC’13, ITSC’14, ICC’16, and ICNC'17. He has served as Symposium Leading-Chair, Co-Chair, and a Member of the Technical Program Committee for several international conferences. He is currently an Associate Editor for IEEE Transactions on Intelligent Transportation Systems and Journal of Communications and Information Networks.|ZHANG Nan received the bachelor degree in communication engineering and the Master degree in integrated circuit engineering from Tongji University, Shanghai, China, in July 2012 and March 2015, respectively. He is now a Senior Engineer at the Department of Algorithms, ZTE Corporation. His current research interests are in the field of 5G channel modeling, new air-interface and MIMO techniques.
Supported by:
HUANG Ziwei, CHENG Xiang, ZHANG Nan. An Improved Non-Geometrical Stochastic Model for Non-WSSUS Vehicle-to-Vehicle Channels[J]. ZTE Communications, 2019, 17(4): 62-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.201904009
Figure 2 The constriction steps of the NGSM [8] (V is an independent and identical complex Gaussian stochastic variable, and Z is a post-operation such as a persistence process).
Figure 3 The constriction steps of the improved model (V is an independent and identical complex Gaussian stochastic variable, and Z is a post-operation such as a persistence process).
Figure 4 The Doppler PSD of different models for different scenarios. (a) Doppler PSD of the model in [8] for S scenario; (b) Doppler PSD of the improved model for S scenario; (c) Doppler PSD of the model in [8] for OHT scenario; (d) Doppler PSD of the improved model for OHT scenario; (e) Doppler PSD of the model in [8] for UIC scenario; (f) Doppler PSD of the improved model for UIC scenario; (g) Doppler PSD of the model in [8] for OLT scenario; (h) Doppler PSD of the improved model for OLT scenario; (i) Doppler PSD of the model in [8] for UOC scenario; (j) Doppler PSD of the improved model for UOC scenario.
i , j | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | 1.0000 | 0.1989 | 0.0555 | 0.0481 | 0.0977 | 0.1074 | 0.3504 |
2 | 0.1965 | 1.0000 | 0.1477 | 0.1495 | 0.0974 | 0.2329 | 0.1999 |
3 | 0.0573 | 0.1411 | 1.0000 | 0.2298 | 0.0106 | 0.1368 | 0.1496 |
4 | 0.0474 | 0.1350 | 0.2342 | 1.0000 | 0.2189 | 0.2088 | 0.1143 |
5 | 0.1066 | 0.0976 | 0.0152 | 0.2092 | 1.0000 | 0.1600 | 0.0000 |
6 | 0.1159 | 0.2363 | 0.1512 | 0.1977 | 0.1524 | 1.0000 | 0.2600 |
7 | 0.3249 | 0.1938 | 0.1442 | 0.1211 | 0.0012 | 0.2600 | 1.0000 |
Table 1 Correlation matrices of the non-geometrical stochastic model (NGSM) in [8] and improved model for scenario UIC (lower/upper triangular part: improved model/ NGSM in [8])
i , j | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 | 1.0000 | 0.1989 | 0.0555 | 0.0481 | 0.0977 | 0.1074 | 0.3504 |
2 | 0.1965 | 1.0000 | 0.1477 | 0.1495 | 0.0974 | 0.2329 | 0.1999 |
3 | 0.0573 | 0.1411 | 1.0000 | 0.2298 | 0.0106 | 0.1368 | 0.1496 |
4 | 0.0474 | 0.1350 | 0.2342 | 1.0000 | 0.2189 | 0.2088 | 0.1143 |
5 | 0.1066 | 0.0976 | 0.0152 | 0.2092 | 1.0000 | 0.1600 | 0.0000 |
6 | 0.1159 | 0.2363 | 0.1512 | 0.1977 | 0.1524 | 1.0000 | 0.2600 |
7 | 0.3249 | 0.1938 | 0.1442 | 0.1211 | 0.0012 | 0.2600 | 1.0000 |
1 |
CHENG X, CHEN C, ZHANG W, et al. 5G⁃Enabled Cooperative Intelligent Vehicular (5GenCIV) Framework: When Benz Meets Marconi [J]. IEEE Intelligent Systems, 2017, 32(3): 53–59. DOI: 10.1109/mis.2017.53
DOI |
2 | CHENG X, ZHANG R⁃Q, YANG L⁃Q. 5G⁃Enabled Vehicular Communications and Networking [M]. Cham, Switzerland: Springer Press. 2018 |
3 |
WANG C X, CHENG X, LAURENSON D I. Vehicle⁃to⁃Vehicle Channel Modeling and Measurements: Recent Advances and Future Challenges [J]. IEEE Communications Magazine, 2009, 47(11): 96–103. DOI: 10.1109/mcom.2009.5307472
DOI |
4 |
YIN X F, CHENG X. Propagation Channel Characterization, Parameter Estimation, and Modeling for Wireless Communications [M]. Singapore, Singapore: John Wiley & Sons, 2016. DOI: 10.1002/9781118188248
DOI |
5 |
YUAN Y, WANG C⁃X, HE Y, et al. 3D Wideband Non⁃Stationary Geometry⁃Based Stochastic Models for Non⁃Isotropic MIMO Vehicle⁃to⁃Vehicle Channels [J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 6883–6895. DOI: 10.1109/twc.2015.2461679
DOI |
6 | MAURER J, FUGEN T, POREBSKA M. A Ray⁃Optical Channel Model for Vehicle to Vehicle Communications [M]. Berlin, Germany: Springer-Verlag, 2004 |
7 |
MARUM G A, INGRAM M. Six Time⁃and Frequency⁃Selective Empirical Channel Models for Vehicular Wireless LANs [J]. IEEE Vehicular Technology Magazine, 2007, 2(4): 4–11. DOI: 10.1109/MVT.2008.917435
DOI |
8 |
SEN I, MATOLAK D W. Vehicle⁃Vehicle Channel Models for the 5-GHz Band [J]. IEEE Transactions on Intelligent Transportation System, 2008, 9(2): 235–245. DOI: 10.1109/tits.2008.922881
DOI |
9 |
ZAJI A G, STUBER G L, PRATT T G, et al. Wideband MIMO Mobile⁃to⁃Mobile Channels: Geometry⁃Based Statistical Modeling with Experimental Verification [J]. IEEE Transactions on Vehicular Technology, 2009, 58(2): 517–534. DOI: 10.1109/tvt.2008.928001
DOI |
10 |
AKKI A S, HABER F. A Statistical Model for Mobile⁃to⁃mobile Land Communication Channel [J]. IEEE Transactions on Vehicular Technology, 1986, 35(1): 2–7. DOI: 10.1109/t-vt.1986.24062
DOI |
11 |
ZAJIC A G, STUBER G L. Space⁃Time Correlated Mobile⁃to⁃Mobile Channels: Modelling and Simulation [J]. IEEE Transactions on Vehicular Technology, 2008, 57(2): 715–726. DOI: 10.1109/tvt.2007.905591
DOI |
12 |
CHENG X, WANG C⁃X, LAURENSON D I, et al. An Adaptive Geometry⁃Based Stochastic Model for Non⁃Isotropic MIMO Mobile⁃to⁃Mobile Channels [J]. IEEE Transactions on Wireless Communications, 2009, 8(8): 4824–4835. DOI: 10.1109/twc.2009.081560
DOI |
13 |
CHENG X, WANG C⁃X, AI B, et al. Envelope Level Crossing Rate and Average Fade Duration of Nonisotropic Vehicle⁃to⁃Vehicle Ricean Fading Channels [J]. IEEE Transactions on Intelligent Transportation System, 2014, 15(1): 62–72. DOI: 10.1109/tits.2013.2274618
DOI |
14 |
CHENG X, YAO Q, WEN M, et al. Wideband Channel Modeling and ICI Cancellation for Vehicle⁃to⁃Vehicle Communication Systems [J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 434–448. DOI: 10.1109/jsac.2013.sup.0513039
DOI |
15 |
KAREDAL J, TUFVESSON F, CZINK N, et al. A Geometry⁃Based Stochastic MIMO Model for Vehicle⁃to⁃Vehicle Communications [J]. IEEE Transactions on Wireless Communications, 2009, 8(7): 3646–3657. DOI: 10.1109/twc.2009.080753
DOI |
16 |
CHEN J, YU C, CHUNG Y, et al. On the Impact of CFO for OFDM Systems with Un⁃equal Gain Diversity Schemes over Small⁃Term Fading [C]//CROWNCOM. Singapore, Singapore, 2008: 1–5. DOI: 10.1109/crowncom.2008.4562552
DOI |
17 |
LI Y, AI B, CHENG X, et al. A TDL Based Non⁃WSSUS Vehicle⁃to⁃Vehicle Channel Model [J]. International Journal of Antenna and Propagation, 2013, 103461:1–8. DOI: 10.1155/2013/103461
DOI |
18 | SCHWARTZ M, BENNETT W R, STEIN S. Communication Systems and Techniques [M]. New York, America: McGraw⁃Hill Press. 1966 |
19 |
KIVINEN J, ZHAO X, VAINIKAINEN P. Empirical Characterization of Wideband Indoor Radio Channel at 5.3 GHz [J]. IEEE Transactions on Antennas and Propagation, 2001, 49(8): 1192–1203. DOI: 10.1109/8.943314
DOI |
20 |
DABIN J, HAIMOVICH A, GREBEL H. A Statistical Ultra⁃Wideband Indoor Channel Model and the Effects of Antenna Directivity on Path Loss and Multipath Propagation [J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 752–758. DOI: 10.1109/jsac.2005.863824
DOI |
21 | ITU⁃R M.1225.Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000 Systems[S].1998 |
22 | PAPOULIS A, PILLAI U. Probability, Random Variables, and Stochastic Processes [M]. New York, USA: McGraw⁃Hill Press. 2001 |
23 |
ZAJIC A G, STUBER G L. Three⁃Dimensional Modeling, Simulation, and Capacity Analysis of Space⁃Time Correlated Mobile⁃to⁃Mobile Channels [J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2042–2054. DOI: 10.1109/tvt.2007.912150
DOI |
24 | IVAN I, BESNIER P, BUNLON X, et al. On the Simulation of Weibull Fading for V2X Communications [C]//ITST. St. Petersburg, Russia, 2011: 86-91. |
25 |
MATOLAK D W, ATHENS O. Channel Modeling for Vehicle⁃to⁃Vehicle Communications [J]IEEE Communication Magazine, 2008,46(5): 76–83. DOI: 10.1109/mcom.2008.4511653
DOI |
26 | LI Y, AI B, MICHELSON D G, et al. A Method for Generating Correlated Taps in Stochastic Vehicle⁃to⁃Vehicle Channel Models [C]//81st IEEE Vehicular Technology Conference. Glasgow, Scotland, 2015: 1-91. |
27 |
PAPAZAFEIROPOULOS A K, KOTSOPOULOS S A. Generalized Phase Crossing Rate and Random FM Noise for α⁃μ Fading Channels [J] IEEE Transactions on Vehicular Technology, 2010,59(1): 494–499. DOI: 10.1109/tvt.2009.2029861
DOI |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||