ZTE Communications ›› 2019, Vol. 17 ›› Issue (3): 50-55.DOI: 10.12142/ZTECOM.201903008
• Research Paper • Previous Articles Next Articles
WANG Jia, ZHAO Yilong, HUANG Xin, HE Guangqiang
Received:
2018-08-31
Online:
2019-09-29
Published:
2019-12-06
About author:
WANG Jia (jwang_wj@sjtu.edu.cn) received her B.S. degree in communication engineering from Nanjing Tech University, China in 2017. She is currently a postgraduate in the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China. Her main research interest is nonlinear optics.|ZHAO Yilong is pursuing his bachelor degree in electronic science and technology at Shanghai Jiao Tong University, China. His research interests include fiber nonlinearity mitigation algorithm and artificial intelligence.|HUANG Xin is pursuing his bachelor degree in information engineering at Shanghai Jiao Tong University, China. His research interests include optical communication, nonlinear photonics, and embedded system.|HE Guangqiang received his Ph.D. degree in communication and information system from Shanghai Jiao Tong University, China in 2006. He joined the Department of Electronic Engineering, Shanghai Jiao Tong University as a lecturer in 2006. From 2009 to 2010, he was a visiting scientist in Department of Physics and Astronomy, University of Rochester, New York, USA. Since December 2011, he has been an associate professor in the Department of Electronic Engineering, Shanghai Jiao Tong University. He has published over 50 SCI papers and held 5 patents. His research interests include quantum information processing, quantum entanglement, quantum cryptography, and nonlinear optics.
WANG Jia, ZHAO Yilong, HUANG Xin, HE Guangqiang. High Speed Polarization-Division Multiplexing Transmissions Based on the Nonlinear Fourier Transform[J]. ZTE Communications, 2019, 17(3): 50-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.201903008
Channels | Baud rate /Gbaud | Guard interval /ns | Modulation format | Bandwidth /GHz | Transmission rate /(Gbits/s) | Spectral efficiency /(bits/s/Hz) | Distance /km | Q-factor |
---|---|---|---|---|---|---|---|---|
32 | 0.5 | 4 | 64-QAM | 16 | 64 | 4 | 1 200 | 6.234 |
64 | 0.5 | 8 | 64-QAM | 32 | 76.8 | 2.4 | 1 200 | 7.405 |
128 | 0.5 | 12 | 64-QAM | 64 | 109.7 | 1.71 | 1 200 | 6.751 |
128 | 0.5 | 8 | 64-QAM | 64 | 153.6 | 2.4 | 960 | 8.195 |
Table 1 The parameters used in different PDM-NFDM transmission systems
Channels | Baud rate /Gbaud | Guard interval /ns | Modulation format | Bandwidth /GHz | Transmission rate /(Gbits/s) | Spectral efficiency /(bits/s/Hz) | Distance /km | Q-factor |
---|---|---|---|---|---|---|---|---|
32 | 0.5 | 4 | 64-QAM | 16 | 64 | 4 | 1 200 | 6.234 |
64 | 0.5 | 8 | 64-QAM | 32 | 76.8 | 2.4 | 1 200 | 7.405 |
128 | 0.5 | 12 | 64-QAM | 64 | 109.7 | 1.71 | 1 200 | 6.751 |
128 | 0.5 | 8 | 64-QAM | 64 | 153.6 | 2.4 | 960 | 8.195 |
Figure 2. The constellation diagram at the distance of 960 km for the case of 32 subcarriers (left column) and 128 subcarriers (right column); a) linewidth=0, w/o carrier recovery; b) linewidth=1 kHz, w/o carrier recovery; c) linewidth=1 kHz, with carrier recovery.
[1] | ESSIAMBRE R J, KRAMER G, WINZER P J , et al. Capacity Limits of Optical Fiber Networks[J]. Journal of Lightwave Technology, 2010,28(4):662-701. DOI: 10.1109/JLT.2009.2039464 |
[2] | SON T Le, VAHID A, HENNING B . High Speed Precompensated Nonlinear Frequency-Division Multiplexed Transmissions[J]. Journal of Lightwave Technology, 2018,36(6):1296-1303. DOI: 10.1109/JLT.2017.2787185 |
[3] | HASEGAWA A, NYU T . Eigenvalue Communication[J]. Journal of Lightwave Technology, 1993,11(3):395-399. DOI: 10.1109/50.219570 |
[4] | PRILEPSKY J E, DEREVYANKO S A . Nonlinear Inverse Synjournal and Eigenvalue Division Multiplexing in Optical Fiber Channels[J]. Physical Review Letters, 2014,113(1):013901. DOI: 10.1103/PhysRevLett.113.013901 |
[5] | SON T L, PRILEPSKY J E, ROSA P , et al. Nonlinear Inverse Synjournal for Optical Links with Distributed Raman Amplification[J]. Journal of Lightwave Technology, 2016,34(8):1778-1786. DOI: 10.1109/JLT.2015.2511084 |
[6] | TURITSYNA E G, TURITSYN S K . Digital Signal Processing Based on Inverse Scattering Transform[J]. Optics Letters, 2013,38(20):4186-4188. DOI: 10.1364/OL.38.004186. |
[7] | SON T Le, PRILEPSKY J E, TURITSYN S K . Nonlinear Inverse Synjournal for High Spectral Efficiency Transmission in Optical Fibers[J]. Optics Express, 2014,22(22):26720-26741. DOI: 10.1364/OE.22.026720 |
[8] | YOUSEFI M I, KSCHISCHANG F R . Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools[J]. IEEE Transactions on Information Theory, 2014,60(7):4312-4328. DOI: 10.1109/TIT.2014.2321143 |
[9] | YOUSEFI M I, KSCHISCHANG F R . Information Transmission Using the Nonlinear Fourier Transform, Part II: Numerical Methods[J]. IEEE Transactions on Information Theory, 2014,60(7):4329-4345. DOI: 10.1109/TIT.2014.2321151 |
[10] | YOUSEFI M I, KSCHISCHANG F R . Information Transmission Using the Nonlinear Fourier Transform, Part III: Spectrum Modulation[J]. IEEE Transactions on Information Theory, 2014,60(7):4346-4369. DOI: 10.1109/TIT.2014.2321155 |
[11] | GOOSSENS J W, YOUSEFI M I, JAOUEN Y , et al. Polarization-Division Multiplexing Based on the Nonlinear Fourier Transform[J]. Optics Express, 2017,25(22):26437-26452. DOI: 10.1364/OE.25.026437 |
[12] | MENYUK C R . Pulse Propagation in An Elliptically Birefringent Kerr Medium[J]. IEEE Journal of Quantum Electronics, 1989,25(12):2674-2682. DOI: 10.1109/3.40656 |
[13] | WAI P K A, MENYUK C R . Polarization Mode Dispersion, Decorrelation, and Diffusion in Optical Fibers with Randomly Varying Birefringence[J]. Journal of Lightwave Technology, 1996,14(2):148-157. DOI: 10.1109/50.482256 |
[14] | MARCUSE D, MENYUK C R, WAI P K A . Application of the Manakov-PMD Equation to Studies of Signal Propagation in Optical Fibers with Randomly Varying Birefringence[J]. Journal of Lightwave Technology, 1997,15(9):1735-1746. DOI: 10.1109/50.622902 |
[15] | MENYUK C R, MARKS B S . Interaction of Polarization Mode Dispersion and Nonlinearity in Optical Fiber Transmission Systems[J]. Journal of Lightwave Technology, 2006,24(7):2806-2826. DOI: 10.1109/JLT.2006.875953 |
[16] | SON T Le, PRILEPSKY J E, TURITSYN S K . Nonlinear Inverse Synjournal Technique for Optical Links with Lumped Amplification[J]. Optics Express, 2015,23(7):26720-26741. DOI: 10.1364/OE.23.008317 |
[17] | SON T Le, HENNING B . 640.5 Gbaud Nonlinear Frequency Division Multiplexed Transmissions with High Order Modulation Formats[J]. Journal of Lightwave Technology, 2017,35(17):3692-3698. DOI: 10.1109/JLT.2017.2718105 |
[18] | HASEGAWA A, KODAMA Y. Solitons in Optical Communications [M]. Oxford, U.K.: Oxford Univ. Press. 1995 |
[19] | VPIsystems. Photonic Modules Reference Manual [Z]. Holmudd, USA, 2002: 337-350 |
[20] | MYNBAEV D K, SCHEINER L L . Fiber-Optic Communications Technology[M]. Cambridge, USA: Academic press, 2008 |
[21] | MANAKOV S V . On the Theory of Two-Dimensional Stationary Self-focusing of Electromagnetic Waves[J]. Soviet Journal of Experimental and Theoretical Physics, 1974,38(2):248-253. |
[22] | DEGASPERIS A, LOMBARDO S. Integrability in Action: Solitons, Instability and Rogue Waves [M]. New York City, USA: Springer International Publishing, 2016 |
[23] | GAIARIN S, PEREGO A M, SILVA E P D , et al. Dual-Polarization Nonlinear Fourier Transform-Based Optical Communication System[J]. Optica, 2018,5(3):263-270. DOI: 10.1364/OPTICA.5.000263 |
[24] | GUI T, CHAN T H, LU C , et al. Alternative Decoding Methods for Optical Communications Based on Nonlinear Fourier Transform[J]. Journal of Lightwave Technology, 2017,35(9):1542-1550. DOI: 10.1109/JLT.2017.2654493 |
[25] | SON T L, VAHID A, HENNING B . Nonlinear Signal Multiplexing for Communication Beyond the Kerr Nonlinearity Limit[J]. Nature Photonics, 2017,11:570-577. DOI: 10.1038/NPHOTON.2017.118 |
[26] | TURITSYN S K, PRILEPSKY J E, SON T Le , et al. Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives[J]. Optica, 2017,4(3):307-322. DOI: 10.1364/OPTICA.4.000307 |
[27] | ZAKHAROV V E, SHABAT A B . Exact Theory of 2-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media[J]. Soviet Journal of Experimental and Theoretical Physics, 1972,34:62-69. |
[28] | SON T L, HENNING B, VAHID A . Demonstration of 640.5 Gbaud Nonlinear Frequency Division Multiplexed Transmission with 32QAM Formats [C]//Optical Fiber Communications Conference and Exhibition (OFC). Los Angeles, USA, 2017: W3J. 1. |
[29] | VAHID A, HENNING B . Experimental Demonstration of Nonlinear Frequency Division Multiplexed Transmission [C]//European Conference on Optical Communication (ECOC). Valencia, Spain, 2015. DOI: 10.1109/ECOC.2015.7341903 |
[30] | VAHID A, SON T Le, HENNING B . Demonstration of Fully Nonlinear Spectrum Modulated System in the Highly Nonlinear Optical Transmission Regime [C]//European Conference on Optical Communication (ECOC). Duesseldorf, Germany, 2016: 18-22. |
[31] | HE G-Q, WANG L-N, LI C-Y , et al. Spectral Function Modulation Based on Nonlinear Frequency Division Multiplexing[J]. Scientific Reports, 2017,7:6058. DOI: 10.1038/s41598-017-06427-1 |
[32] | WANG L-N, LIU S-Y, LI C-Y , et al. A Combination of Eigenvalue and Spectral Function Modulation in Nonlinear Frequency Division Multiplexing [C]//OSA Nonlinear Optics Toptical Meeting (NLO). Waikoloa, Hawaii, USA, 2017: NW4A. 21. |
[33] | LIU S-Y, WANG L-N, LI C-Y , et al. Spectral Function Modulation Based on Nonlinear Fourier Transform [C]//OSA Nonlinear Optics Toptical Meeting (NLO). Waikoloa, Hawaii, USA, 2017: NW4A. 22 |
[34] | YOUSEFI M I, YANGZHANG X . Linear and Nonlinear Frequency-Division Multiplexing [C]//2016 42nd European Conference on Optical Communication (ECOC). Duesseldorf, Germany, 2016: 342-344 |
[35] | PFAU T, HOFFMANN S, NOé R . Hardware-Ef?cient Coherent Digital Receiver Concept with Feedforward Carrier Recovery for M-QAM Constellations[J]. Journal of Lightwave Technology, 2009,27(8):989-999. DOI: 10.1109/JLT.2008.2010511 |
[1] | REN Fang, LI Yidan, YE Bing, LIU Jianguo, CHEN Weizhang. Real-Time 4-Mode MDM Transmission Using Commercial 400G OTN Transceivers and All-Fiber Mode Multiplexers [J]. ZTE Communications, 2024, 22(1): 106-110. |
[2] | ZHANG Bo, WANG Yihui, FENG Yinian, YANG Yonghui, PENG Lin. A 220 GHz Frequency-Division Multiplexing Wireless Link with High Data Rate [J]. ZTE Communications, 2023, 21(3): 63-69. |
[3] | YAN Baoluo, WU Qiong, SHI Hu, ZHAO Yan, JIA Yinqiu, FENG Zhenhua, CHEN Weizhang, ZHU Mo, ZHAO Zhiyong, FANG Yu, CHEN Yong. Toward Low-Cost Flexible Intelligent OAM in Optical Fiber Communication Networks [J]. ZTE Communications, 2022, 20(3): 54-60. |
[4] | Mohamed Sufyan Islim, Harald Haas. Modulation Techniques for Li-Fi [J]. ZTE Communications, 2016, 14(2): 29-40. |
[5] | Fa-Long Luo. Signal Processing Techniques for 5G: An Overview [J]. ZTE Communications, 2015, 13(1): 20-27. |
[6] | Jiangnan Xiao, Zizheng Cao, Fan Li, Jin Tang, and Lin Chen. Flipped-Exponential Nyquist Pulse Technique to Optimize PAPR in Optical Direct-Detection OFDM Systems [J]. ZTE Communications, 2012, 10(3): 16-21. |
[7] | Ze Dong. 100 Gbit/s Nyquist-WDM PDM 16-QAM Transmission over 1200 km SMF-28 with Ultrahigh Spectrum Efficiency [J]. ZTE Communications, 2012, 10(3): 22-27. |
[8] | Wei-Ren Peng, Itsuro Morita, Hidenori Takahashi, and Takehiro Tsuritani. Greater than 200 Gb/s Transmission Using Direct-Detection Optical OFDM Superchannel [J]. ZTE Communications, 2012, 10(1): 10-17. |
[9] | Jianqiang Li, Ekawit Tipsuwannakul, Magnus Karlsson, and Peter A. Andrekson. Exploiting the Faster-Than-Nyquist Concept in Wavelength-Division Multiplexing Systems Using Duobinary Shaping [J]. ZTE Communications, 2012, 10(1): 23-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||