ZTE Communications ›› 2021, Vol. 19 ›› Issue (2): 82-90.DOI: 10.12142/ZTECOM.202102011
• • 上一篇
收稿日期:
2021-02-18
出版日期:
2021-06-25
发布日期:
2021-07-27
XIAO Kai1,2(), LIU Xing1,2, HAN Xianghui1, HAO Peng1, ZHANG Junfeng1, ZHOU Dong1, WEI Xingguang1
Received:
2021-02-18
Online:
2021-06-25
Published:
2021-07-27
About author:
XIAO Kai (. [J]. ZTE Communications, 2021, 19(2): 82-90.
XIAO Kai, LIU Xing, HAN Xianghui, HAO Peng, ZHANG Junfeng, ZHOU Dong, WEI Xingguang. Flexible Multiplexing Mechanism for Coexistence of URLLC and EMBB Services in 5G Networks[J]. ZTE Communications, 2021, 19(2): 82-90.
BCI | the number of OTDOs | 1–7 | ||||||
---|---|---|---|---|---|---|---|---|
FDIG | 1/4 | |||||||
DPCI | the number of OTDOs | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
FDIG | 1/21 | ≤1/10 | 1/7 | ≤1/5 | ≤1/4 | ≤1/3 | 1/3 |
Table 1 Minimum indication granularity with different numbers of the occupied time domain occasions
BCI | the number of OTDOs | 1–7 | ||||||
---|---|---|---|---|---|---|---|---|
FDIG | 1/4 | |||||||
DPCI | the number of OTDOs | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
FDIG | 1/21 | ≤1/10 | 1/7 | ≤1/5 | ≤1/4 | ≤1/3 | 1/3 |
Index | Actual Overlapping Resource Proportion x | Power Boosting/dB |
---|---|---|
0 | x ≤ 10% | 0 |
1 | 10% < x ≤ 40% | 3 |
2 | 40% < x ≤ 80% | 6 |
3 | x > 80% | 9 |
Table 2 Power boosting value according to actual overlapping resource proportion
Index | Actual Overlapping Resource Proportion x | Power Boosting/dB |
---|---|---|
0 | x ≤ 10% | 0 |
1 | 10% < x ≤ 40% | 3 |
2 | 40% < x ≤ 80% | 6 |
3 | x > 80% | 9 |
Parameters | Value |
---|---|
Carrier frequency | 4 GHz |
Simulation bandwidth | 40 MHz |
SCS | 30 kHz |
Channel model | UMa in TR 38.901 |
Antenna configuration | 4 receiving antenna ports 2 transmitting antenna ports |
gNB receiver | MMSE-IRC |
Cell load setup | KeMBB: 5, 10, 20, KURLLC: 5, 10, 20 |
TTI configuration | URLLC: 2, 3, 4 OFDM symbols eMBB: 14 OFDM symbols |
HARQ | Max number of transmissions=4 with target BLER=0.01%(URLLC) or 10%(eMBB) |
Traffic model | eMBB: ? Packet arrival per UE: FTP Model 3 ? Packet size: 50–600 bytes URLLC: ? Packet arrival per UE: periodic with arrival rate of 1 packet per 2 ms ? Packet size: 32 bytes |
UE distribution | 80% of users are outdoors 20% of users are indoors |
eMBB UE function configuration | 90% of users support DPCI 10% of users do not support DPCI |
Table 3 System-level simulation assumptions
Parameters | Value |
---|---|
Carrier frequency | 4 GHz |
Simulation bandwidth | 40 MHz |
SCS | 30 kHz |
Channel model | UMa in TR 38.901 |
Antenna configuration | 4 receiving antenna ports 2 transmitting antenna ports |
gNB receiver | MMSE-IRC |
Cell load setup | KeMBB: 5, 10, 20, KURLLC: 5, 10, 20 |
TTI configuration | URLLC: 2, 3, 4 OFDM symbols eMBB: 14 OFDM symbols |
HARQ | Max number of transmissions=4 with target BLER=0.01%(URLLC) or 10%(eMBB) |
Traffic model | eMBB: ? Packet arrival per UE: FTP Model 3 ? Packet size: 50–600 bytes URLLC: ? Packet arrival per UE: periodic with arrival rate of 1 packet per 2 ms ? Packet size: 32 bytes |
UE distribution | 80% of users are outdoors 20% of users are indoors |
eMBB UE function configuration | 90% of users support DPCI 10% of users do not support DPCI |
Multiplexing Method | |||
---|---|---|---|
No scheme/% | 84.37 | 78.64 | 66.71 |
BCI/% | 93.33 | 89.87 | 80.64 |
DPCI/% | 93.27 | 89.64 | 80.62 |
BPC/% | 87.78 | 83.97 | 73.84 |
ROPC/% | 88.34 | 86.47 | 76.77 |
Table 4 Percentage of UE satisfying reliability and latency requirements for URLLC transmission in different multiplexing methods
Multiplexing Method | |||
---|---|---|---|
No scheme/% | 84.37 | 78.64 | 66.71 |
BCI/% | 93.33 | 89.87 | 80.64 |
DPCI/% | 93.27 | 89.64 | 80.62 |
BPC/% | 87.78 | 83.97 | 73.84 |
ROPC/% | 88.34 | 86.47 | 76.77 |
Combination Case | |||
---|---|---|---|
BCI/% | 93.33 | 89.87 | 80.64 |
BPC/% | 87.78 | 83.97 | 73.84 |
DPCI&&ROPC/% | 96.14 | 92.99 | 84.38 |
Table 5 Percentage of UE satisfying reliability and latency requirements for URLLC transmission in different baseline methods and the dynamic selection mechanism
Combination Case | |||
---|---|---|---|
BCI/% | 93.33 | 89.87 | 80.64 |
BPC/% | 87.78 | 83.97 | 73.84 |
DPCI&&ROPC/% | 96.14 | 92.99 | 84.38 |
1 | ITU⁃R. IMT Vision: Framework and overall objectives of the future development of IMT for 2020 and beyond: ITU⁃R M.2083⁃0 [R]. 2015. |
2 |
QI R Z, CHI X F, ZHAO L L, et al. Martingales⁃based ALOHA⁃type grant⁃free access algorithms for multi⁃channel networks with mMTC/URLLC terminals Co⁃existence [J]. IEEE access, 2020, 8: 37608–37620. DOI: 10.1109/ACCESS.2020.2975545
DOI URL |
3 |
ALSENWI M, TRAN N H, BENNIS M, et al. eMBB⁃URLLC resource slicing: A risk⁃sensitive approach [J]. IEEE communications letters, 2019, 23(4): 740–743. DOI: 10.1109/LCOMM.2019.2900044
DOI URL |
4 |
GIDLUND M, LENNVALL T, ÅKERBERG J. Will 5G become yet another wireless technology for industrial automation? [C]//2017 IEEE International Conference on Industrial Technology (ICIT). Toronto, Canada: IEEE, 2017: 1319–1324. DOI:10.1109/ICIT.2017.7915554
DOI URL |
5 | ITU⁃R. Minimum requirements related to technical performance for IMT⁃ 2020 radio interface(s): ITU⁃R M.2410⁃0 [R]. 2017 |
6 | 3GPP. Study on new radio (NR) access technology physical layer aspects: TR 38.802 [S]. 2017 |
7 |
POPOVSKI P, NIELSEN J J, STEFANOVIC C, et al. Wireless access for ultra⁃reliable low⁃latency communication: principles and building blocks [J]. IEEE network, 2018, 32(2): 16–23. DOI: 10.1109/MNET.2018.1700258
DOI URL |
8 |
NIKBAKHT H, WIGGER M, SHITZ S S. Mixed delay constraints in Wyner’s soft⁃handoff network [C]//2018 IEEE International Symposium on Information Theory (ISIT). Vail, USA: IEEE, 2018: 1171–1175. DOI: 10.1109/ISIT.2018.8437572
DOI URL |
9 |
ANAND A, DE VECIANA G, SHAKKOTTAI S. Joint scheduling of URLLC and eMBB traffic in 5G wireless networks [C]// IEEE Conference on Computer Communications. Honolulu, USA: IEEE, 2018: 1970–1978. DOI: 10.1109/INFOCOM.2018.8486430
DOI URL |
10 |
KASSAB R, SIMEONE O, POPOVSKI P. Coexistence of URLLC and eMBB services in the C⁃RAN uplink: an information⁃theoretic study [C]//2018 IEEE global communications conference (GLOBECOM). Abu Dhabi, United Arab Emirates: IEEE, 2018: 1–6. DOI: 10.1109/GLOCOM.2018.8647460
DOI URL |
11 |
KHAN H, BUTT M M, SAMARAKOON S, et al. Deep learning assisted CSI estimation for joint URLLC and eMBB resource allocation [C]//2020 IEEE international conference on communications workshops (ICC workshops). Dublin, Ireland: IEEE, 2020: 1–6. DOI:10.1109/ICCWorkshops49005.2020.9145297
DOI URL |
12 |
YANG W, LI C P, FAKOORIAN A, et al. Dynamic URLLC and eMBB multiplexing design in 5G new radio[C]//2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC). Las Vegas, USA: IEEE, 2020: 1⁃5. DOI: 10.1109/CCNC46108.2020.9045687
DOI URL |
13 |
MA T T, ZHANG Y, WANG F G, et al. Slicing resource allocation for eMBB and URLLC in 5G RAN [J]. Wireless communications and mobile computing, 2020, 2020: 1–11. DOI: 10.1155/2020/6290375
DOI URL |
14 |
ESSWIE A A, PEDERSEN K I. Null space based preemptive scheduling for joint URLLC and eMBB traffic in 5G networks [C]//2018 IEEE Globecom Workshops. Abu Dhabi, United Arab Emirates: IEEE, 2018: 1–6. DOI:10.1109/GLOCOMW.2018.8644351
DOI URL |
15 |
PEDERSEN K I, BERARDINELLI G, FREDERIKSEN F, et al. A flexible 5G frame structure design for frequency⁃division duplex cases [J]. IEEE communications magazine, 2016, 54(3): 53–59. DOI: 10.1109/MCOM.2016.7432148
DOI URL |
16 |
TAVARES F M L, BERARDINELLI G, MAHMOOD N H, et al. On the impact of receiver imperfections on the MMSE⁃IRC receiver performance in 5G networks [C]//2014 IEEE 79th Vehicular Technology Conference (VTC Spring). Seoul, Korea (South): IEEE, 2014: 1–6. DOI: 10.1109/VTCSpring.2014.7023014
DOI URL |
17 |
ESSWIE A A, PEDERSEN K I. Capacity optimization of spatial preemptive scheduling for joint URLLC⁃eMBB traffic in 5G new radio [C]//2018 IEEE Globecom Workshops. Abu Dhabi, United Arab Emirates. IEEE, 2018: 1–6. DOI: 10.1109/GLOCOMW.2018.8644070
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||