ZTE Communications ›› 2023, Vol. 21 ›› Issue (4): 17-28.DOI: 10.12142/ZTECOM.202304003
收稿日期:
2023-09-11
出版日期:
2023-12-07
发布日期:
2023-12-07
ZHANG Huiran1,2, DONG Zhen3(), WANG Mingsheng1,2
Received:
2023-09-11
Online:
2023-12-07
Published:
2023-12-07
About author:
ZHANG Huiran received her BE and ME degrees in School of Geodesy and Geomatics and State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, both from Wuhan University, China in 2020 and 2023, respectively. She is currently the surveyor of Guangzhou Urban Planning and Design Survey Research Institute, China. Her research interests include point cloud data processing and compression. She participated in several projects related to the field of remote sensing and published one paper in Geomatics and Information Science of Wuhan University.. [J]. ZTE Communications, 2023, 21(4): 17-28.
ZHANG Huiran, DONG Zhen, WANG Mingsheng. Spatio-Temporal Context-Guided Algorithm for Lossless Point Cloud Geometry Compression[J]. ZTE Communications, 2023, 21(4): 17-28.
Point Cloud Data | BPP/bit | Gains | |||||
---|---|---|---|---|---|---|---|
Single↓ | G-PCC↓ | PCL-PCC↓ | S3D↓ | G-PCC/% | PCL-PCC/% | S3D/% | |
Andrew_vox09 | 1.118 83 | 1.135 068 | 2.074 226 | 1.12 | -1.45 | -85.39 | -0.10 |
Andrew_vox10 | 1.010 745 | 1.104 986 | 1.952 745 | - | -9.32 | -93.20 | - |
David_vox09 | 1.058 42 | 1.114 673 | 2.105 917 | 1.06 | -5.31 | -98.97 | -0.15 |
David_vox10 | 1.028 09 | 1.090 388 | 1.974 752 | - | -6.06 | -92.08 | - |
Ricardo_vox09 | 1.037 76 | 1.081 282 | 2.046 144 | 1.04 | -4.19 | -97.17 | -0.22 |
Ricardo_vox10 | 0.965 985 | 1.068 567 | 1.944 874 | - | -10.62 | -101.34 | - |
Sarah_vox09 | 1.063 19 | 1.107 865 | 2.101 666 | 1.07 | -4.20 | -97.68 | -0.64 |
Sarah_vox10 | 1.012 36 | 1.065 947 | 1.978 308 | - | -5.29 | -95.42 | - |
Longdress_vox10 | 0.945 35 | 1.025 244 | 2.347 862 | 0.95 | -8.45 | -148.36 | -0.49 |
Loot_vox10 | 0.909 825 | 0.945 36 | 2.314 874 | 0.91 | -3.91 | -154.43 | -0.02 |
Redandblack_vox10 | 1.014 15 | 1.082 107 | 2.400 688 | 1.03 | -6.70 | -136.72 | -1.56 |
Soldier_vox10 | 0.958 515 | 1.032 572 | 2.423 025 | 0.96 | -7.73 | -152.79 | -0.15 |
Facade 00009 vox12 | 6.941 5 | 7.243 8 | 9.349 4 | - | -4.35 | -34.69 | - |
Facade_00015_vox14 | 7.937 2 | 8.638 5 | 10.030 5 | - | -8.84 | -26.37 | - |
Arco_Valentino_ Dense_vox12 | 9.077 9 | 9.826 4 | 11.251 4 | - | -8.25 | -23.94 | - |
Palazzo_Carignano_ Dense_vox14 | 7.647 5 | 8.164 4 | 9.943 4 | - | -6.76 | -30.02 | - |
Table 1 BPP comparisons of our spatial context-guided compression algorithm and the baseline methods
Point Cloud Data | BPP/bit | Gains | |||||
---|---|---|---|---|---|---|---|
Single↓ | G-PCC↓ | PCL-PCC↓ | S3D↓ | G-PCC/% | PCL-PCC/% | S3D/% | |
Andrew_vox09 | 1.118 83 | 1.135 068 | 2.074 226 | 1.12 | -1.45 | -85.39 | -0.10 |
Andrew_vox10 | 1.010 745 | 1.104 986 | 1.952 745 | - | -9.32 | -93.20 | - |
David_vox09 | 1.058 42 | 1.114 673 | 2.105 917 | 1.06 | -5.31 | -98.97 | -0.15 |
David_vox10 | 1.028 09 | 1.090 388 | 1.974 752 | - | -6.06 | -92.08 | - |
Ricardo_vox09 | 1.037 76 | 1.081 282 | 2.046 144 | 1.04 | -4.19 | -97.17 | -0.22 |
Ricardo_vox10 | 0.965 985 | 1.068 567 | 1.944 874 | - | -10.62 | -101.34 | - |
Sarah_vox09 | 1.063 19 | 1.107 865 | 2.101 666 | 1.07 | -4.20 | -97.68 | -0.64 |
Sarah_vox10 | 1.012 36 | 1.065 947 | 1.978 308 | - | -5.29 | -95.42 | - |
Longdress_vox10 | 0.945 35 | 1.025 244 | 2.347 862 | 0.95 | -8.45 | -148.36 | -0.49 |
Loot_vox10 | 0.909 825 | 0.945 36 | 2.314 874 | 0.91 | -3.91 | -154.43 | -0.02 |
Redandblack_vox10 | 1.014 15 | 1.082 107 | 2.400 688 | 1.03 | -6.70 | -136.72 | -1.56 |
Soldier_vox10 | 0.958 515 | 1.032 572 | 2.423 025 | 0.96 | -7.73 | -152.79 | -0.15 |
Facade 00009 vox12 | 6.941 5 | 7.243 8 | 9.349 4 | - | -4.35 | -34.69 | - |
Facade_00015_vox14 | 7.937 2 | 8.638 5 | 10.030 5 | - | -8.84 | -26.37 | - |
Arco_Valentino_ Dense_vox12 | 9.077 9 | 9.826 4 | 11.251 4 | - | -8.25 | -23.94 | - |
Palazzo_Carignano_ Dense_vox14 | 7.647 5 | 8.164 4 | 9.943 4 | - | -6.76 | -30.02 | - |
Point Cloud Data | Average BPP/bit | Average Gains | |||||
---|---|---|---|---|---|---|---|
Single↓ | G-PCC↓ | PCL-PCC↓ | S3D↓ | G-PCC | PCL-PCC | S3D | |
Microsoft voxelized upper bodies | 1.036 923 | 1.096 097 | 2.022 329 | 1.072 5 | -5.71% | -95.03% | -3.43% |
8i voxelized full bodies | 0.956 96 | 1.021 321 | 2.371 612 | 0.962 5 | -6.73% | -147.83% | -0.58% |
MPEG Facade and architecture | 1.158 62 | 1.198 392 | 2.336 034 | - | -3.43% | -101.62% | - |
Table 2 BPP comparison with state-of-the-art algorithms on single-frame point cloud data
Point Cloud Data | Average BPP/bit | Average Gains | |||||
---|---|---|---|---|---|---|---|
Single↓ | G-PCC↓ | PCL-PCC↓ | S3D↓ | G-PCC | PCL-PCC | S3D | |
Microsoft voxelized upper bodies | 1.036 923 | 1.096 097 | 2.022 329 | 1.072 5 | -5.71% | -95.03% | -3.43% |
8i voxelized full bodies | 0.956 96 | 1.021 321 | 2.371 612 | 0.962 5 | -6.73% | -147.83% | -0.58% |
MPEG Facade and architecture | 1.158 62 | 1.198 392 | 2.336 034 | - | -3.43% | -101.62% | - |
Point Cloud Sequences | BPP/bit | Gains | |||||||
---|---|---|---|---|---|---|---|---|---|
Multiple↓ | G-PCC↓ | InterEM↓ | PCL-PCC↓ | S4D↓ | G-PCC/% | InterEM/% | PCL-PCC/% | S4D/% | |
Andrew_vox09 | 1.072 25 | 1.135 068 | - | 2.074 226 | 1.08 | -5.86 | - | -93.45 | -0.72 |
Andrew_vox10 | 0.972 24 | 1.104 986 | - | 1.952 745 | - | -13.65 | - | -100.85 | - |
David_vox09 | 1.046 565 | 1.114 673 | - | 2.105 917 | 1.05 | -6.51 | - | -101.22 | -0.33 |
David_vox10 | 1.020 547 | 1.090 388 | - | 1.974 752 | - | -6.84 | - | -93.50 | - |
Ricardo_vox09 | 0.982 66 | 1.081 282 | - | 2.046 144 | 1.02 | -10.04 | - | -108.23 | -3.80 |
Ricardo_vox10 | 0.954 235 | 1.068 567 | - | 1.944 874 | - | -11.98 | - | -103.81 | - |
Sarah_vox09 | 1.028 745 | 1.107 865 | - | 2.101 666 | 1.04 | -7.69 | - | -104.29 | -1.09 |
Sarah_vox10 | 1.008 465 | 1.065 947 | - | 1.978 308 | - | -5.70 | - | -96.17 | - |
Longdress_vox10 | 0.896 585 | 1.025 244 | 1.056 275 | 2.347 862 | 0.95 | -14.35 | -17.81 | -161.87 | -5.96 |
Loot_vox10 | 0.861 815 | 0.945 36 | 1.009 412 | 2.314 874 | 0.89 | -9.69 | -17.13 | -168.60 | -3.27 |
Redandblack_vox10 | 0.970 43 | 1.082 107 | 1.140 317 | 2.400 688 | 1.01 | -11.51 | -17.51 | -147.38 | -4.08 |
Soldier_vox10 | 0.704 24 | 1.032 572 | 1.070 037 | 2.423 025 | 0.79 | -46.62 | -51.94 | -244.06 | -12.18 |
Table 3 Bit per point comparisons of our spatio-temporal context-guided compression algorithm and the baseline methods
Point Cloud Sequences | BPP/bit | Gains | |||||||
---|---|---|---|---|---|---|---|---|---|
Multiple↓ | G-PCC↓ | InterEM↓ | PCL-PCC↓ | S4D↓ | G-PCC/% | InterEM/% | PCL-PCC/% | S4D/% | |
Andrew_vox09 | 1.072 25 | 1.135 068 | - | 2.074 226 | 1.08 | -5.86 | - | -93.45 | -0.72 |
Andrew_vox10 | 0.972 24 | 1.104 986 | - | 1.952 745 | - | -13.65 | - | -100.85 | - |
David_vox09 | 1.046 565 | 1.114 673 | - | 2.105 917 | 1.05 | -6.51 | - | -101.22 | -0.33 |
David_vox10 | 1.020 547 | 1.090 388 | - | 1.974 752 | - | -6.84 | - | -93.50 | - |
Ricardo_vox09 | 0.982 66 | 1.081 282 | - | 2.046 144 | 1.02 | -10.04 | - | -108.23 | -3.80 |
Ricardo_vox10 | 0.954 235 | 1.068 567 | - | 1.944 874 | - | -11.98 | - | -103.81 | - |
Sarah_vox09 | 1.028 745 | 1.107 865 | - | 2.101 666 | 1.04 | -7.69 | - | -104.29 | -1.09 |
Sarah_vox10 | 1.008 465 | 1.065 947 | - | 1.978 308 | - | -5.70 | - | -96.17 | - |
Longdress_vox10 | 0.896 585 | 1.025 244 | 1.056 275 | 2.347 862 | 0.95 | -14.35 | -17.81 | -161.87 | -5.96 |
Loot_vox10 | 0.861 815 | 0.945 36 | 1.009 412 | 2.314 874 | 0.89 | -9.69 | -17.13 | -168.60 | -3.27 |
Redandblack_vox10 | 0.970 43 | 1.082 107 | 1.140 317 | 2.400 688 | 1.01 | -11.51 | -17.51 | -147.38 | -4.08 |
Soldier_vox10 | 0.704 24 | 1.032 572 | 1.070 037 | 2.423 025 | 0.79 | -46.62 | -51.94 | -244.06 | -12.18 |
Average BPP/bit | |||||||
---|---|---|---|---|---|---|---|
Point cloud data | Multiple↓ | Single↓ | G-PCC↓ | InterEM↓ | PCL-PCC↓ | S4D↓ | S3D↓ |
Microsoft voxelized upper bodies | 1.010 713 | 1.036 923 | 1.096 097 | - | 2.022 329 | 1.047 5 | 1.072 5 |
8i voxelized full bodies | 0.858 268 | 0.956 96 | 1.021 321 | 1.069 01 | 2.371 612 | 0.91 | 0.962 5 |
Average Gains | |||||||
Point cloud data | Single | G-PCC | interEM | PCL-PCC | S4D | S3D | |
Microsoft voxelized upper bodies | -2.59% | -8.45% | - | -100.09% | -3.64% | -6.11% | |
8i voxelized full bodies | -11.50% | -19.00% | -24.55% | -176.33% | -6.03% | -12.14% |
Table 4 Bit per point comparison with state-of-the-art algorithms on multi-frame point cloud data
Average BPP/bit | |||||||
---|---|---|---|---|---|---|---|
Point cloud data | Multiple↓ | Single↓ | G-PCC↓ | InterEM↓ | PCL-PCC↓ | S4D↓ | S3D↓ |
Microsoft voxelized upper bodies | 1.010 713 | 1.036 923 | 1.096 097 | - | 2.022 329 | 1.047 5 | 1.072 5 |
8i voxelized full bodies | 0.858 268 | 0.956 96 | 1.021 321 | 1.069 01 | 2.371 612 | 0.91 | 0.962 5 |
Average Gains | |||||||
Point cloud data | Single | G-PCC | interEM | PCL-PCC | S4D | S3D | |
Microsoft voxelized upper bodies | -2.59% | -8.45% | - | -100.09% | -3.64% | -6.11% | |
8i voxelized full bodies | -11.50% | -19.00% | -24.55% | -176.33% | -6.03% | -12.14% |
Point Cloud Data | Partition | Non-Partition | Gains/% | |||
---|---|---|---|---|---|---|
Multiple↓ | Single↓ | Multipl↓ | Single↓ | Multiple↓ | Single↓ | |
Longdress_vox10 | 0.896 585 | 0.945 35 | 1.501 45 | 1.514 88 | -67.46 | -60.25 |
Loot_vox10 | 0.861 815 | 0.909 825 | 1.477 48 | 1.493 59 | -71.44 | -64.16 |
Redandblack_vox10 | 0.970 43 | 1.014 15 | 1.620 92 | 1.548 96 | -67.03 | -52.73 |
Soldier_vox10 | 0.704 24 | 0.958 515 | 1.521 01 | 1.563 37 | -115.98 | -63.10 |
Table 5 Ablation study on predictive encoding
Point Cloud Data | Partition | Non-Partition | Gains/% | |||
---|---|---|---|---|---|---|
Multiple↓ | Single↓ | Multipl↓ | Single↓ | Multiple↓ | Single↓ | |
Longdress_vox10 | 0.896 585 | 0.945 35 | 1.501 45 | 1.514 88 | -67.46 | -60.25 |
Loot_vox10 | 0.861 815 | 0.909 825 | 1.477 48 | 1.493 59 | -71.44 | -64.16 |
Redandblack_vox10 | 0.970 43 | 1.014 15 | 1.620 92 | 1.548 96 | -67.03 | -52.73 |
Soldier_vox10 | 0.704 24 | 0.958 515 | 1.521 01 | 1.563 37 | -115.98 | -63.10 |
Point Cloud Data | With Context Dictionary | Without Context Dictionary | Gains/% | |||
---|---|---|---|---|---|---|
Multiple↓ | Single↓ | Multiple↓ | Single↓ | Multiple↓ | Single↓ | |
Longdress_vox10 | 0.896 585 | 0.945 35 | 1.279 66 | 1.489 1 | -42.73 | -57.52 |
Loot_vox10 | 0.861 815 | 0.909 825 | 1.272 72 | 1.364 27 | -47.68 | -49.95 |
Redandblack_vox10 | 0.970 43 | 1.014 15 | 1.294 69 | 1.435 11 | -33.41 | -41.51 |
Soldier_vox10 | 0.704 24 | 0.958 515 | 1.112 31 | 1.374 98 | -57.94 | -43.45 |
Table 6 Ablation study on arithmetic coding
Point Cloud Data | With Context Dictionary | Without Context Dictionary | Gains/% | |||
---|---|---|---|---|---|---|
Multiple↓ | Single↓ | Multiple↓ | Single↓ | Multiple↓ | Single↓ | |
Longdress_vox10 | 0.896 585 | 0.945 35 | 1.279 66 | 1.489 1 | -42.73 | -57.52 |
Loot_vox10 | 0.861 815 | 0.909 825 | 1.272 72 | 1.364 27 | -47.68 | -49.95 |
Redandblack_vox10 | 0.970 43 | 1.014 15 | 1.294 69 | 1.435 11 | -33.41 | -41.51 |
Soldier_vox10 | 0.704 24 | 0.958 515 | 1.112 31 | 1.374 98 | -57.94 | -43.45 |
Encoding Time/s | |||||||
---|---|---|---|---|---|---|---|
Point cloud data | Multiple | Single | S4D | S3D | G-PCC | InterEM | PCL-PCC |
Microsoft voxelized upper bodies | 52.1 | 64.2 | 806.03 | 489.72 | 3.813 | - | 2.235 |
8i voxelized full bodies | 56.7 | 66.9 | 904.67 | 640.85 | 7.105 | 4.708 | 3.549 |
MPEG facade and architecture | - | 111.2 | - | - | 15.37 | - | 22.4 |
Decoding Time/s | |||||||
Point cloud data | Multiple | Single | S4D | S3D | G-PCC | InterEM | PCL-PCC |
Microsoft voxelized upper bodies | 13.7 | 14.4 | 117.4 | 74.03 | 1.031 | - | 0.809 |
8i voxelized full bodies | 16.3 | 17.1 | 194.25 | 113.95 | 1.376 | 4.10 | 0.922 |
MPEG facade and architecture | - | 22.4 | - | - | 2.703 | - | 7.74 |
Table 7 Time consumption comparison with state-of-the-art algorithms in encoding and decoding
Encoding Time/s | |||||||
---|---|---|---|---|---|---|---|
Point cloud data | Multiple | Single | S4D | S3D | G-PCC | InterEM | PCL-PCC |
Microsoft voxelized upper bodies | 52.1 | 64.2 | 806.03 | 489.72 | 3.813 | - | 2.235 |
8i voxelized full bodies | 56.7 | 66.9 | 904.67 | 640.85 | 7.105 | 4.708 | 3.549 |
MPEG facade and architecture | - | 111.2 | - | - | 15.37 | - | 22.4 |
Decoding Time/s | |||||||
Point cloud data | Multiple | Single | S4D | S3D | G-PCC | InterEM | PCL-PCC |
Microsoft voxelized upper bodies | 13.7 | 14.4 | 117.4 | 74.03 | 1.031 | - | 0.809 |
8i voxelized full bodies | 16.3 | 17.1 | 194.25 | 113.95 | 1.376 | 4.10 | 0.922 |
MPEG facade and architecture | - | 22.4 | - | - | 2.703 | - | 7.74 |
1 | MI X X, YANG B S, DONG Z, et al. Automated 3D road boundary extraction and vectorization using MLS point clouds [J]. IEEE transactions on intelligent transportation systems, 2022, 23(6): 5287–5297. DOI: 10.1109/TITS.2021.3052882 |
2 | DONG Z, LIANG F X, YANG B S, et al. Registration of large-scale terrestrial laser scanner point clouds: a review and benchmark [J]. ISPRS journal of photogrammetry and remote sensing, 2020, 163: 327–342. DOI: 10.1016/j.isprsjprs.2020.03.013 |
3 | GRAZIOSI D, NAKAGAMI O, KUMA S, et al. An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-based (G-PCC) [J]. APSIPA transactions on signal and information processing, 2020, 9: e13 |
4 | DE QUEIROZ R L, CHOU P A. Compression of 3D point clouds using a region-adaptive hierarchical transform [J]. IEEE transactions on image processing, 2016, 25(8): 3947–3956. DOI: 10.1109/TIP.2016.2575005 |
5 | BLETTERER A, PAYAN F, ANTONINI M, et al. Point cloud compression using depth maps [J]. Electronic imaging, 2016, 2016(21):1–6 |
6 | MEKURIA R, BLOM K, Design CESAR P., implementation, and evaluation of a point cloud codec for tele-immersive video [J]. IEEE transactions on circuits and systems for video technology, 2017, 27(4): 828–842. DOI: 10.1109/TCSVT.2016.2543039 |
7 | DE QUEIROZ R L, CHOU P A. Motion-compensated compression of dynamic voxelized point clouds [J]. IEEE transactions on image processing, 2017, 26(8): 3886–3895. DOI: 10.1109/TIP.2017.2707807 |
8 | CAO C, PREDA M, ZAHARIA T. 3D point cloud compression: a survey [C]//The 24th International Conference on 3D Web Technology. ACM, 2019: 1–9. DOI: 10.1145/3329714.3338130 |
9 | GRAZIOSI D, NAKAGAMI O, KUMA S, et al. An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-based (G-PCC) [J]. APSIPA transactions on signal and information processing, 2020, 9(1): e13. DOI: 10.1017/atsip.2020.12 |
10 | HUANG Y, PENG J L, KUO C J, et al. Octree-based progressive geometry coding of point clouds [C]//The 3rd Eurographics/IEEE VGTC Conference on Point-Based Graphics. IEEE, 2016: 103–110 |
11 | FAN Y X, HUANG Y, PENG J L. Point cloud compression based on hierarchical point clustering [C]//Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. IEEE, 2014: 1–7. DOI: 10.1109/APSIPA.2013.6694334 |
12 | DRICOT A, ASCENSO J. Adaptive multi-level triangle soup for geometry-based point cloud coding [C]//The 21st International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2019: 1–6. DOI: 10.1109/MMSP.2019.8901791 |
13 | HE C, RAN L Q, WANG L, et al. Point set surface compression based on shape pattern analysis [J]. Multimedia tools and applications, 2017, 76(20): 20545–20565. DOI: 10.1007/s11042-016-3991-0 |
14 | IMDAD U, ASIF M, AHMAD M, et al. Three dimensional point cloud compression and decompression using polynomials of degree one [J]. Symmetry, 2019, 11(2): 209. DOI: 10.3390/sym11020209 |
15 | SUN X B, MA H, SUN Y X, et al. A novel point cloud compression algorithm based on clustering [J]. IEEE robotics and automation letters, 2019, 4(2): 2132–2139. DOI: 10.1109/LRA.2019.2900747 |
16 | DE OLIVEIRA RENTE P, BRITES C, ASCENSO J, et al. Graph-based static 3D point clouds geometry coding [J]. IEEE transactions on multimedia, 2019, 21(2): 284–299. DOI: 10.1109/TMM.2018.2859591 |
17 | ISO. Geometry-based point cloud compression (G-PCC): [S]. 2021 |
18 | DRICOT A, ASCENSO J. Hybrid octree-plane point cloud geometry coding [C]//The 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019: 1–5 |
19 | ZHANG X, GAO W, LIU S. Implicit geometry partition for point cloud compression [C]//Proceedings of 2020 Data Compression Conference (DCC). IEEE, 2020: 73–82. DOI: 10.1109/DCC47342.2020.00015 |
20 | QUACH M, VALENZISE G, DUFAUX F. Learning convolutional transforms for lossy point cloud geometry compression [C]//The 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019: 4320–4324. DOI: 10.1109/ICIP.2019.8803413 |
21 | HUANG T X, LIU Y. 3D point cloud geometry compression on deep learning [C]//The 27th ACM International Conference on Multimedia. ACM, 2019: 890–898. DOI: 10.1145/3343031.3351061 |
22 | GUARDA A F R, RODRIGUES N M M, PEREIRA F. Point cloud coding: Adopting a deep learning-based approach [C]//Picture Coding Symposium (PCS). IEEE, 2020: 1–5. DOI: 10.1109/PCS48520.2019.8954537 |
23 | WANG J Q, ZHU H, MA Z, et al. Learned point cloud geometry compression [EB/OL]. [2023-09-01]. |
24 | AINALA K, MEKURIA R N, KHATHARIYA B, et al. An improved enhancement layer for octree based point cloud compression with plane projection approximation [C]//SPIE Optical Engineering+Applications. SPIE, 2016: 223–231. DOI: 10.1117/12.2237753 |
25 | SCHWARZ S, HANNUKSELA M M, FAKOUR-SEVOM V, et al. 2D video coding of volumetric video data [C]//Picture Coding Symposium (PCS). IEEE, 2018: 61–65. DOI: 10.1109/PCS.2018.8456265 |
26 | FAKOUR SEVOM V, SCHWARZ S, GABBOUJ M. Geometry-guided 3D data interpolation for projection-based dynamic point cloud coding [C]//The 7th European Workshop on Visual Information Processing (EUVIP). IEEE, 2019: 1–6. DOI: 10.1109/EUVIP.2018.8611760 |
27 | KATHARIYA B, LI L, LI Z, et al. Lossless dynamic point cloud geometry compression with inter compensation and traveling salesman prediction [C]//Data Compression Conference. IEEE, 2018: 414. DOI: 10.1109/DCC.2018.00067 |
28 | ISO. Visual volumetric video-based coding (V3C) and video-based point cloud compression: [S]. 2021 |
29 | PARK J, LEE J, PARK S, et al. Projection-based occupancy map coding for 3D point cloud compression [J]. IEIE transactions on smart processing & computing, 2020, 9(4): 293–297. DOI: 10.5573/ieiespc.2020.9.4.293 |
30 | COSTA A, DRICOT A, BRITES C, et al. Improved patch packing for the MPEG V-PCC standard [C]//IEEE 21st International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2019: 1–6. DOI: 10.1109/MMSP.2019.8901690 |
31 | KAMMERL J, BLODOW N, RUSU R B, et al. Real-time compression of point cloud streams [C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. IEEE, 2012: 778–785. DOI: 10.1109/ICRA.2012.6224647 |
32 | PCL. Point cloud library. [EB/OL]. [2023-09-01]. |
33 | THANOU D, CHOU P A, FROSSARD P. Graph-based compression of dynamic 3D point cloud sequences [J]. IEEE transactions on image processing, 2016, 25(4): 1765–1778. DOI: 10.1109/TIP.2016.2529506 |
34 | LI L, LI Z, ZAKHARCHENKO V, et al. Advanced 3D motion prediction for video based point cloud attributes compression [C]//Data Compression Conference (DCC). IEEE, 2019: 498–507. DOI: 10.1109/DCC.2019.00058 |
35 | ZHAO L L, MA K K, LIN X H, et al. Real-time LiDAR point cloud compression using Bi-directional prediction and range-adaptive floating-point coding [J]. IEEE transactions on broadcasting, 2022, 68(3): 620–635. DOI: 10.1109/TBC.2022.3162406 |
36 | LIN J P, LIU D, LI H Q, et al. M-LVC: Multiple frames prediction for learned video compression [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 3543–3551. DOI: 10.1109/CVPR42600.2020.00360 |
37 | YANG R, MENTZER F, VAN GOOL L, et al. Learning for video compression with hierarchical quality and recurrent enhancement [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 6627–6636. DOI: 10.1109/CVPR42600.2020.00666 |
38 | KAYA E C, TABUS I. Lossless compression of point cloud sequences using sequence optimized CNN models [J]. IEEE access, 2022, 10: 83678–83691. DOI: 10.1109/ACCESS.2022.3197295 |
39 | DING S, MANNAN M A, POO A N. Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces [J]. Computer-aided design, 2004, 36(13): 1281-1294 |
40 | ALEXIOU E, VIOLA I, BORGES T M, et al. A comprehensive study of the rate-distortion performance in MPEG point cloud compression [J]. APSIPA transactions on signal and information processing, 2019, 8: e27. doi:10.1017/ATSIP.2019.20 |
41 | PEIXOTO E. Intra-frame compression of point cloud geometry using dyadic decomposition [J]. IEEE signal processing letters, 2020, 27: 246–250. DOI: 10.1109/LSP.2020.2965322 |
42 | RAMALHO E, PEIXOTO E, MEDEIROS E. Silhouette 4D with context selection: lossless geometry compression of dynamic point clouds [J]. IEEE signal processing letters, 2021, 28: 1660–1664. DOI: 10.1109/lsp.2021.3102525 |
43 | ISO. Common test conditions for G-PCC document N00106: ISO/IEC [S]. 2021 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||