1 |
CAO C, PREDA M, ZAHARIA T. 3D point cloud compression: a survey [C]//24th International Conference on 3D Web Technology. ACM, 2019: 1–9. DOI: 10.1145/3329714.3338130
|
2 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 77–85. DOI: 10.1109/CVPR.2017.16
|
3 |
GUO Y L, WANG H Y, HU Q Y, et al. Deep learning for 3D point clouds: a survey [J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(12): 4338–4364. DOI: 10.1109/TPAMI.2020.3005434
|
4 |
LIU Y P, YANG Q, XU Y L, et al. Point cloud quality assessment: dataset construction and learning-based no-reference metric [J]. ACM transactions on multimedia computing, communications, and applications, 2023, 19(2s): No.80. DOI: 10.1145/3550274
|
5 |
LIU Q, SU H L, DUANMU Z F, et al. Perceptual quality assessment of colored 3D point clouds [J]. IEEE transactions on visualization and computer graphics, 2023, 29(8): 3642–3655. DOI: 10.1109/TVCG.2022.3167151
|
6 |
YANG Q, CHEN H, MA Z, et al. Predicting the perceptual quality of point cloud: a 3D-to-2D projection-based exploration [J]. IEEE transactions on multimedia, 2021, 23: 3877–3891. DOI: 10.1109/TMM.2020.3033117
|
7 |
LAZZAROTTO D, TESTOLINA M, EBRAHIMI T. On the impact of spatial rendering on point cloud subjective visual quality assessment [C]//14th International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2022: 1–6. DOI: 10.1109/QoMEX55416.2022.9900898
|
8 |
ALEXIOU E, EBRAHIMI T. On the performance of metrics to predict quality in point cloud representations [C]//Proc. SPIE 10396, Applications of Digital Image Processing XL. SPIE, 2017: 282–297. DOI: 10.1117/12.2275142
|
9 |
NEHMÉ Y, FARRUGIA J P, DUPONT F, et al. Comparison of subjective methods, with and without explicit reference, for quality assessment of 3D graphics [C]//ACM Symposium on Applied Perception. ACM, 2019: 1–9. DOI: 10.1145/3343036.3352493
|
10 |
EBRAHIMI T, ALEXIOU E, FONSECA T A, et al. A novel methodology for quality assessment of voxelized point clouds [C]//Proc. Applications of Digital Image Processing XLI. SPIE, 2018. DOI: 10.1117/12.2322741
|
11 |
ALEXIOU E, VIOLA I, BORGES T M, et al. A comprehensive study of the rate-distortion performance in MPEG point cloud compression [J]. APSIPA transactions on signal and information processing, 2019, 8(1): e27. DOI: 10.1017/atsip.2019.20
|
12 |
JAVAHERI A, BRITES C, PEREIRA F, et al. Subjective and objective quality evaluation of 3D point cloud denoising algorithms [C]//2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2017: 1–6. DOI: 10.1109/ICMEW.2017.8026263
|
13 |
ALEXIOU E, EBRAHIMI T. Impact of visualisation strategy for subjective quality assessment of point clouds [C]//2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2018: 1–6. DOI: 10.1109/ICMEW.2018.8551498
|
14 |
ALEXIOU E, PINHEIRO A M G, DUARTE C, et al. Point cloud subjective evaluation methodology based on reconstructed surfaces [C]//Proc. SPIE 10752, Applications of Digital Image Processing XLI. SPIE, 2018, 10752: 160–173. DOI: 10.1117/12.2321518
|
15 |
JAVAHERI A, BRITES C, PEREIRA F, et al. Subjective and objective quality evaluation of compressed point clouds [C]//IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2017: 1–6. DOI: 10.1109/MMSP.2017.8122239
|
16 |
SILVA CRUZ L A DA, DUMIĆ E, ALEXIOU E, et al. Point cloud quality evaluation: towards a definition for test conditions [C]//2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2019: 1–6. DOI: 10.1109/QoMEX.2019.8743258
|
17 |
ZERMAN E, GAO P, OZCINAR C, et al. Subjective and objective quality assessment for volumetric video compression [J]. Electronic imaging, 2019, 31(10): 323–1. DOI: 10.2352/issn.2470-1173.2019.10.iqsp-323
|
18 |
SU H L, DUANMU Z F, LIU W T, et al. Perceptual quality assessment of 3d point clouds [C]//2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019: 3182–3186. DOI: 10.1109/ICIP.2019.8803298
|
19 |
JAVAHERI A, BRITES C, PEREIRA F, et al. Point cloud rendering after coding: impacts on subjective and objective quality [J]. IEEE transactions on multimedia, 2021, 23: 4049–4064. DOI: 10.1109/TMM.2020.3037481
|
20 |
ZERMAN E, OZCINAR C, GAO P, et al. Textured mesh vs coloured point cloud: a subjective study for volumetric video compression [C]//Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123137
|
21 |
CAO K M, XU Y, COSMAN P. Visual quality of compressed mesh and point cloud sequences [J]. IEEE access, 2020, 8: 171203–171217. DOI: 10.1109/ACCESS.2020.3024633
|
22 |
ALEXIOU E, EBRAHIMI T. On subjective and objective quality evaluation of point cloud geometry [C]//Ninth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2017: 1–3. DOI: 10.1109/QoMEX.2017.7965681
|
23 |
ALEXIOU E, EBRAHIMI T. Point cloud quality assessment metric based on angular similarity [C]//2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2018: 1–6. DOI: 10.1109/ICME.2018.8486512
|
24 |
ALEXIOU E, EBRAHIMI T. Benchmarking of objective quality metrics for colorless point clouds [C]//2018 Picture Coding Symposium (PCS). IEEE, 2018: 51–55. DOI: 10.1109/PCS.2018.8456252
|
25 |
ALEXIOU E, EBRAHIMI T. Exploiting user interactivity in quality assessment of point cloud imaging [C]//Eleventh International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2019: 1–6. DOI: 10.1109/QoMEX.2019.8743277
|
26 |
VIOLA I, SUBRAMANYAM S, CESAR P. A color-based objective quality metric for point cloud contents [C]//Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123089
|
27 |
JAVAHERI A, BRITES C, PEREIRA F, et al. Improving PSNR-based quality metrics performance for point cloud geometry [C]//2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020: 3438–3442. DOI: 10.1109/ICIP40778.2020.9191233
|
28 |
HUA L, YU M, JIANG G Y, et al. VQA-CPC: a novel visual quality assessment metric of color point clouds [C]//Proc. SPIE 11550, Optoelectronic Imaging and Multimedia Technology VII. SPIE, 2020, 11550: 244–252. DOI: 10.1117/12.2573686
|
29 |
ALEXIOU E, UPENIK E, EBRAHIMI T. Towards subjective quality assessment of point cloud imaging in augmented reality [C]//IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2017: 1–6. DOI: 10.1109/MMSP.2017.8122237
|
30 |
ALEXIOU E, EBRAHIMI T, BERNARDO M V, et al. Point cloud subjective evaluation methodology based on 2D rendering [C]//Tenth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2018: 1–6. DOI: 10.1109/QoMEX.2018.8463406
|
31 |
PERRY S, CONG H P, SILVA CRUZ L A DA, et al. Quality evaluation of static point clouds encoded using MPEG codecs [C]//2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020: 3428–3432. DOI: 10.1109/ICIP40778.2020.9191308
|
32 |
SOLIMINI A G. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness [J]. PLoS one, 2013, 8(2): e56160. DOI: 10.1371/journal.pone.0056160
|
33 |
SHARPLES S, COBB S, MOODY A, et al. Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems [J]. Displays, 2008, 29(2): 58–69. DOI: 10.1016/j.displa.2007.09.005
|
34 |
SUBRAMANYAM S, LI J, VIOLA I, et al. Comparing the quality of highly realistic digital humans in 3DoF and 6DoF: a volumetric video case study [C]//2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2020: 127–136. DOI: 10.1109/VR46266.2020.00031
|
35 |
ALEXIOU E, YANG N Y, EBRAHIMI T. PointXR: a toolbox for visualization and subjective evaluation of point clouds in virtual reality [C]//Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123121
|
36 |
WU X J, ZHANG Y, FAN C L, et al. Subjective quality database and objective study of compressed point clouds with 6DoF head-mounted display [J]. IEEE transactions on circuits and systems for video technology, 2021, 31(12): 4630–4644. DOI: 10.1109/TCSVT.2021.3101484
|
37 |
ZHANG J, HUANG W B, ZHU X Q, et al. A subjective quality evaluation for 3D point cloud models [C]//2014 International Conference on Audio, Language and Image Processing. IEEE, 2015: 827–831. DOI: 10.1109/ICALIP.2014.7009910
|
38 |
GUTIÉRREZ J, VIGIER T, LE CALLET P. Quality evaluation of 3D objects in mixed reality for different lighting conditions [J]. Electronic imaging, 2020, 32(11): no. 128. DOI: 10.2352/issn.2470-1173.2020.11.hvei-128
|
39 |
TURK G, LEVOY M. Zippered polygon meshes from range images [C]//21st Annual Conference on Computer Graphics and Interactive Techniques. ACM, 1994: 311–318. DOI: 10.1145/192161.192241
|
40 |
MPEG-PCC. MPEG point cloud datasets [DB/OL]. (2017-01-15)[2018-05-26].
|
41 |
JPEG. JPEG pleno database [DB/OL]. (2016-11-04)[2018-04-12].
|
42 |
HUA L, YU M, HE Z Y, et al. CPC-GSCT: visual quality assessment for coloured point cloud based on geometric segmentation and colour transformation [J]. IET image processing, 2022, 16(4): 1083–1095. DOI: 10.1049/ipr2.12211
|
43 |
AK A, ZERMAN E, QUACH M, et al. BASICS: broad quality assessment of static point clouds in compression scenarios [EB/OL]. (2023-02-09)[2023-05-06].
|
44 |
LIU Q, YUAN H, HAMZAOUI R, et al. Reduced reference perceptual quality model with application to rate control for video-based point cloud compression [J]. IEEE transactions on image processing, 2021, 30: 6623–6636. DOI: 10.1109/TIP.2021.3096060
|
45 |
LIU Q, SU H L, CHEN T X, et al. No-reference bitstream-layer model for perceptual quality assessment of V-PCC encoded point clouds [J]. IEEE transactions on multimedia, 2023, 25: 4533–4546. DOI: 10.1109/TMM.2022.3177926
|
46 |
QUACH M, VALENZISE G, DUFAUX F. Improved deep point cloud geometry compression [C]//IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2020: 1–6. DOI: 10.1109/MMSP48831.2020.9287077
|
47 |
TIAN D, OCHIMIZU H, FENG C, et al. Geometric distortion metrics for point cloud compression [C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2018: 3460–3464. DOI: 10.1109/ICIP.2017.8296925
|
48 |
MEKURIA R, BLOM K, Design CESAR P., implementation, and evaluation of a point cloud codec for tele-immersive video [J]. IEEE transactions on circuits and systems for video technology, 2017, 27(4): 828–842. DOI: 10.1109/TCSVT.2016.2543039
|
49 |
MEKURIA R, LI Z, TULVAN C, et al. Evaluation criteria for PCC (point cloud compression): MPEG: MPEG-I 2016/n16332 [S]. 2016
|
50 |
MEYNET G, DIGNE J, LAVOUÉ G. et al: A quality metric for 3D point clouds [C]//Eleventh International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2019: 1–3. DOI: 10.1109/QoMEX.2019.8743313
|
51 |
JAVAHERI A, BRITES C, PEREIRA F, et al. A generalized Hausdorff distance based quality metric for point cloud geometry [C]//Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123087
|
52 |
ALEXIOU E, EBRAHIMI T. Towards a point cloud structural similarity metric [C]//2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2020: 1–6. DOI: 10.1109/ICMEW46912.2020.9106005
|
53 |
MEYNET G, NEHMÉ Y, DIGNE J, et al. PCQM: A full-reference quality metric for colored 3D point clouds [C]//Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123147
|
54 |
JAVAHERI A, BRITES C, PEREIRA F, et al. Mahalanobis based point to distribution metric for point cloud geometry quality evaluation [J]. IEEE signal processing letters, 2020, 27: 1350–1354. DOI: 10.1109/LSP.2020.3010128
|
55 |
YANG Q, MA Z, XU Y L, et al. Inferring point cloud quality via graph similarity [J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(6): 3015–3029. DOI: 10.1109/TPAMI.2020.3047083
|
56 |
DINIZ R, FREITAS P G, FARIAS M C Q. Multi-distance point cloud quality assessment [C]//2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020: 3443–3447. DOI: 10.1109/ICIP40778.2020.9190956
|
57 |
DINIZ R, FREITAS P G, FARIAS M C Q. Towards a point cloud quality assessment model using local binary patterns [C]//Twelfth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123076
|
58 |
DINIZ R, FREITAS P G, FARIAS M. A novel point cloud quality assessment metric based on perceptual color distance patterns [C]//IS&T International Symposium on Electronic Imaging Science and Technology 2021, Image Quality and System Performance XVIII. IS&T, 2021. DOI: 10.2352/issn.2470-1173.2021.9.iqsp-256
|
59 |
DINIZ R, FREITAS P G, FARIAS M C Q. Local luminance patterns for point cloud quality assessment [C]//IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2020: 1–6. DOI: 10.1109/MMSP48831.2020.9287154
|
60 |
DINIZ R, FREITAS P G, FARIAS M C Q. Color and geometry texture descriptors for point-cloud quality assessment [J]. IEEE signal processing letters, 2021, 28: 1150–1154. DOI: 10.1109/LSP.2021.3088059
|
61 |
HUA L, JIANG G Y, YU M, et al. BQE-CVP: blind quality evaluator for colored point cloud based on visual perception [C]//2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2021: 1–6. DOI: 10.1109/BMSB53066.2021.9547070
|
62 |
XU Y L, YANG Q, YANG L, et al. EPES: point cloud quality modeling using elastic potential energy similarity [J]. IEEE transactions on broadcasting, 2022, 68(1): 33–42. DOI: 10.1109/TBC.2021.3114510
|
63 |
ZHANG Y J, YANG Q, XU Y L. MS-GraphSIM: inferring point cloud quality via multiscale graph similarity [C]//29th ACM International Conference on Multimedia. ACM, 2021: 1230–1238. DOI: 10.1145/3474085.3475294
|
64 |
ZHANG Z C, SUN W, MIN X K, et al. No-reference quality assessment for 3D colored point cloud and mesh models [J]. IEEE transactions on circuits and systems for video technology, 2022, 32(11): 7618–7631. DOI: 10.1109/TCSVT.2022.3186894
|
65 |
HE Z Y, JIANG G Y, JIANG Z D, et al. Towards a colored point cloud quality assessment method using colored texture and curvature projection [C]//2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021: 1444–1448. DOI: 10.1109/ICIP42928.2021.9506762
|
66 |
TAO W X, JIANG G Y, JIANG Z D, et al. Point cloud projection and multi-scale feature fusion network based blind quality assessment for colored point clouds [C]//29th ACM International Conference on Multimedia. ACM, 2021: 5266–5272. DOI: 10.1145/3474085.3475645
|
67 |
LIU Q, YUAN H, SU H L, et al. PQA-net: Deep no reference point cloud quality assessment via multi-view projection [J]. IEEE transactions on circuits and systems for video technology, 2021, 31(12): 4645–4660. DOI: 10.1109/TCSVT.2021.3100282
|
68 |
CIGNONI P, ROCCHINI C, SCOPIGNO R. Metro: measuring error on simplified surfaces [J]. Computer graphics forum, 1998, 17(2): 167–174. DOI: 10.1111/1467-8659.00236
|
69 |
TIAN D, OCHIMIZU H, FENG C, et al. Evaluation metrics for point cloud compression: ISO/IEC m74008 [S]. 2017,
|
70 |
HE Z Y, JIANG G Y, YU M, et al. TGP-PCQA: texture and geometry projection based quality assessment for colored point clouds [J]. Journal of visual communication and image representation, 2022, 83: 103449. DOI: 10.1016/j.jvcir.2022.103449
|
71 |
TU R W, JIANG G Y, YU M, et al. Pseudo-reference point cloud quality measurement based on joint 2-D and 3-D distortion description [J]. IEEE transactions on instrumentation and measurement, 2023, 72: No.5019314. DOI: 10.1109/TIM.2023.3290291
|
72 |
VIOLA I, CESAR P. A reduced reference metric for visual quality evaluation of point cloud contents [J]. IEEE signal processing letters, 2020, 27: 1660–1664. DOI: 10.1109/LSP.2020.3024065
|
73 |
LIU Y P, YANG Q, XU Y L. Reduced reference quality assessment for point cloud compression [C]//2022 IEEE International Conference on Visual Communications and Image Processing (VCIP). IEEE, 2023: 1–5. DOI: 10.1109/VCIP56404.2022.10008813
|
74 |
ZHOU W, YUE G H, ZHANG R Z, et al. Reduced-reference quality assessment of point clouds via content-oriented saliency projection [J]. IEEE signal processing letters, 2023, 30: 354–358. DOI: 10.1109/LSP.2023.3264105
|
75 |
SU H L, LIU Q, LIU Y X, et al. Bitstream-based perceptual quality assessment of compressed 3D point clouds [J]. IEEE transactions on image processing, 2023, 32: 1815–1828. DOI: 10.1109/TIP.2023.3253252
|
76 |
ZHOU W, YANG Q, JIANG Q P, et al. Blind quality assessment of 3D dense point clouds with structure guided resampling [EB/OL]. (2022-08-31)[2022-09-05].
|
77 |
LIU Q, LIU Y Y, SU H L, et al. Progressive knowledge transfer based on human visual perception mechanism for perceptual quality assessment of point clouds [EB/OL]. (2022-11-30)[2022-12-04].
|
78 |
TU R W, JIANG G Y, YU M, et al. V-PCC projection based blind point cloud quality assessment for compression distortion [J]. IEEE transactions on emerging topics in computational intelligence, 2023, 7(2): 462–473. DOI: 10.1109/TETCI.2022.3201619
|
79 |
SHAN Z Y, YANG Q, YE R, et al. GPA-net: no-reference point cloud quality assessment with multi-task graph convolutional network [J]. IEEE transactions on visualization and computer graphics, 2802, 99: 1–13. DOI: 10.1109/TVCG.2023.3282802
|
80 |
ZHANG Z C, SUN W, WU H N, et al. GMS-3DQA: projection-based grid mini-patch sampling for 3D model quality assessment [EB/OL]. (2023-06-09)[2023-07-03].
|
81 |
LIU Y, YANG Q, ZHANG Y, et al. Once-training-all-fine: no-reference point cloud quality assessment via domain-relevance degradation description [EB/OL]. (2023-07-04)[2023-07-12].
|
82 |
YANG Q, LIU Y P, CHEN S H, et al. No-reference point cloud quality assessment via domain adaptation [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 21147–21156. DOI: 10.1109/CVPR52688.2022.02050
|
83 |
FAN Y, ZHANG Z C, SUN W, et al. A No-reference quality assessment metric for point cloud based on captured video sequences [C]//24th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2022: 1–5. DOI: 10.1109/MMSP55362.2022.9949359
|
84 |
ZHANG Z C, SUN W, ZHU Y C, et al. Treating point cloud as moving camera videos: a no-reference quality assessment metric [EB/OL]. (2022-09-11)[2022-10-12].
|
85 |
ZHANG Z C, SUN W, MIN X K, et al. MM-PCQA: multi-modal learning for no-reference point cloud quality assessment [EB/OL]. (2022-09-01)[2022-09-27].
|
86 |
LAVOUÉ G, GELASCAE D, DUPONTF, et al. Perceptually driven 3D distance metrics with application to watermarking [C]//Proc. SPIE 6312, Applications of Digital Image Processing XXIX, SPIE. 2006, 6312: 150–161. DOI: 10.1117/12.686964
|
87 |
LAVOUÉ G. A multiscale metric for 3D mesh visual quality assessment [J]. Computer graphics forum, 2011, 30(5): 1427–1437. DOI: 10.1111/j.1467-8659.2011.02017.x
|
88 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE transactions on image processing, 2004, 13(4): 600–612. DOI: 10.1109/TIP.2003.819861
|
89 |
WANG Z, BOVIK A C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures [J]. IEEE signal processing magazine, 2009, 26(1): 98–117. DOI: 10.1109/MSP.2008.930649
|
90 |
SUN W, MIN X K, TU D Y, et al. Blind quality assessment for in-the-wild images via hierarchical feature fusion and iterative mixed database training [J]. IEEE journal of selected topics in signal processing, 2023, PP(99): 1–15. DOI: 10.1109/JSTSP.2023.3270621
|
91 |
MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain [J]. IEEE transactions on image processing, 2012, 21(12): 4695–4708. DOI: 10.1109/TIP.2012.2214050
|
92 |
NARVEKAR N D, KARAM L J. A no-reference perceptual image sharpness metric based on a cumulative probability of blur detection [C]//2009 International Workshop on Quality of Multimedia Experience. IEEE, 2009: 87–91. DOI: 10.1109/QOMEX.2009.5246972
|
93 |
ZHANG L, ZHANG L, BOVIK A C. A feature-enriched completely blind image quality evaluator [J]. IEEE transactions on image processing, 2015, 24(8): 2579–2591. DOI: 10.1109/TIP.2015.2426416
|
94 |
GU K, ZHAI G T, YANG X K, et al. Using free energy principle for blind image quality assessment [J]. IEEE transactions on multimedia, 2015, 17(1): 50–63. DOI: 10.1109/TMM.2014.2373812
|
95 |
GU K, ZHAI G T, YANG X K, et al. No-reference image quality assessment metric by combining free energy theory and structural degradation model [C]//2013 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2013: 1–6. DOI: 10.1109/ICME.2013.6607462
|
96 |
MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer [J]. IEEE signal processing letters, 2013, 20(3): 209–212. DOI: 10.1109/LSP.2012.2227726
|
97 |
ZHANG W X, MA K D, YAN J, et al. Blind image quality assessment using a deep bilinear convolutional neural network [J]. IEEE transactions on circuits and systems for video technology, 2020, 30(1): 36–47. DOI: 10.1109/TCSVT.2018.2886771
|
98 |
HARA K, KATAOKA H, SATOH Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 6546–6555. DOI: 10.1109/CVPR.2018.0068
|
99 |
VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment: PHASE II [R]. 2003
|
100 |
WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment [C]//Thrity-Seventh Asilomar Conference on Signals, Systems & Computers. IEEE, 2004: 1398–1402. DOI: 10.1109/ACSSC.2003.1292216
|
101 |
SHEIKH H R, BOVIK A C. Image information and visual quality [J]. IEEE transactions on image processing, 2006, 15(2): 430–444. DOI: 10.1109/TIP.2005.859378
|
102 |
MITTAL A, SAAD M A, BOVIK A C. A completely blind video integrity oracle [J]. IEEE transactions on image processing. IEEE, 2016, 25(1): 289–300. DOI: 10.1109/TIP.2015.2502725
|
103 |
SAAD M A, BOVIK A C, CHARRIER C. Blind prediction of natural video quality [J]. IEEE transactions on image processing, 2014, 23(3): 1352–1365. DOI: 10.1109/TIP.2014.2299154
|
104 |
KORHONEN J. Two-level approach for no-reference consumer video quality assessment [J]. IEEE transactions on image processing, 2019, 28(12): 5923–5938. DOI: 10.1109/TIP.2019.2923051
|
105 |
TU Z Z, WANG Y L, BIRKBECK N, et al. UGC-VQA: benchmarking blind video quality assessment for user generated content [J]. IEEE transactions on image processing. IEEE, 2021, 30: 4449–4464. DOI: 10.1109/TIP.2021.3072221
|
106 |
LI D Q, JIANG T T, JIANG M. Quality assessment of in-the-wild videos [C]//27th ACM International Conference on Multimedia. New York: ACM, 2019: 2351–2359. DOI: 10.1145/3343031.3351028
|
107 |
TU Z Z, YU X X, WANG Y L, et al. RAPIQUE: rapid and accurate video quality prediction of user generated content [J]. IEEE open journal of signal processing, 2021, 2: 425–440. DOI: 10.1109/OJSP.2021.3090333
|
108 |
SUN W, WANG T, MIN X K, et al. Deep learning based full-reference and no-reference quality assessment models for compressed UGC videos [C]//2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2021: 1–6. DOI: 10.1109/ICMEW53276.2021.9455999
|