1 |
DENNY J C, COLLINS F S. Precision medicine in 2030—seven ways to transform healthcare [J]. Cell, 2021, 184(6): 1415–1419. DOI: 10.1016/j.cell.2021.01.015
DOI
|
2 |
RAGHUNATH S, ULLOA CERNA A E, JING L Y, et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network [J]. Nature medicine, 2020, 26(6): 886–891. DOI: 10.1038/s41591-020-0870-z
DOI
|
3 |
GAO Y, CAI G Y, FANG W, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19 [J]. Nature communications, 2020, 11: 5033. DOI: 10.1038/s41467-020-18684-2
DOI
|
4 |
TOMAŠEV N, GLOROT X, RAE J W, et al. A clinically applicable approach to continuous prediction of future acute kidney injury [J]. Nature, 2019, 572(7767): 116–119. DOI: 10.1038/s41586-019-1390-1
DOI
|
5 |
LIANG H Y, TSUI B Y, NI H, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence [J]. Nature medicine, 2019, 25(3): 433–438. DOI: 10.1038/s41591-018-0335-9
DOI
|
6 |
KOCH M. Artificial intelligence is becoming natural [J]. Cell, 2018, 173(3): 531–533. DOI: 10.1016/j.cell.2018.04.007
DOI
|
7 |
BACCHI S, TAN Y, OAKDEN‐RAYNER L, et al. Machine learning in the prediction of medical inpatient length of stay [J]. Internal medicine journal, 2022, 52(2): 176–185
|
8 |
VAROQUAUX G, CHEPLYGINA V. Machine learning for medical imaging: methodological failures and recommendations for the future [J]. NPJ digital medicine, 2022, 5(1): 1–8
|
9 |
COUDRAY N, OCAMPO P S, SAKELLAROPOULOS T, et al. Classification and mutation prediction from non‐small cell lung cancer histopathology images using deep learning [J]. Nature medicine, 2018, 24(10): 1559–1567. DOI: 10.1038/s41591-018-0177-5
DOI
|
10 |
YANG Q, LIU Y, CHENG Y, et al. Synthesis lectures on artificial intelligence and machine learning: federated learning [M]. Berlin Heidelberg, Germany: Springer, 2019: 1–207. DOI: 10.2200/s00960ed2v01y201910aim043
DOI
|
11 |
KELLY C J, KARTHIKESALINGAM A, SULEYMAN M, et al. Key challenges for delivering clinical impact with artificial intelligence [J]. BMC medicine, 2019, 17(1): 195. DOI: 10.1186/s12916-019-1426-2
DOI
|
12 |
LI R W, CHEN Y, RITCHIE M D, et al. Electronic health records and polygenic risk scores for predicting disease risk [J]. Nature reviews genetics, 2020, 21(8): 493–502. DOI: 10.1038/s41576-020-0224-1
DOI
|
13 |
SHILO S, ROSSMAN H, SEGAL E. Axes of a revolution: challenges and promises of big data in healthcare [J]. Nature medicine, 2020, 26(1): 29–38. DOI: 10.1038/s41591-019-0727-5
DOI
|
14 |
JOHNSON A, BULGARELLI L, POLLARD T, et al. MIMIC-IV-ED [DB]. PhysioNet, 2021. DOI: 10.13026/as7t-c445
DOI
|
15 |
LI J, YAN X S, CHAUDHARY D, et al. Imputation of missing values for electronic health record laboratory data [J]. NPJ digital medicine, 2021, 4(1): 147. DOI: 10.1038/s41746-021-00518-0
DOI
|
16 |
WU J R, VODOVOTZ Y, ABDELHAMID S, et al. Multi-omic analysis in injured humans: patterns align with outcomes and treatment responses [J]. Cell reports medicine, 2021, 2(12): 100478. DOI: 10.1016/j.xcrm.2021.100478
DOI
|
17 |
WEERAKODY P B, WONG K W, WANG G J, et al. A review of irregular time series data handling with gated recurrent neural networks [J]. Neurocomputing, 2021, 441: 161–178. DOI: 10.1016/j.neucom.2021.02.046
DOI
|
18 |
KUMAR Y, SINGLA R. Federated learning systems for healthcare: perspective and recent progress [J]. Federated learning systems, 2021: 141–156
|
19 |
VAID A, JALADANKI S K, XU J, et al. Federated learning of electronic health records improves mortality prediction in patients hospitalized with covid-19 [EB/OL]. (2020-08-11)[2021-11-21].
|
20 |
SATTLER F, WIEDEMANN S, MULLER K R, et al. Robust and communication-efficient federated learning from non-i.i.d. data [J]. IEEE transactions on neural networks and learning systems, 2020, 31(9): 3400–3413. DOI: 10.1109/TNNLS.2019.2944481
DOI
|
21 |
RAMASWAMY S, MATHEWS R, RAO K, et al. Federated learning for emoji prediction in a mobile keyboard [EB/OL]. (2019-06-11)[2021-11-21].
|
22 |
KANG J W, XIONG Z H, NIYATO D, et al. Reliable federated learning for mobile networks [J]. IEEE wireless communications, 2020, 27(2): 72–80. DOI: 10.1109/MWC.001.1900119
DOI
|
23 |
WEI R M, WANG J Y, SU M M, et al. Missing value imputation approach for mass spectrometry-based metabolomics data [J]. Scientific reports, 2018, 8(1): 663. DOI: 10.1038/s41598-017-19120-0
DOI
|
24 |
LUNDBERG S, LEE S I. A unified approach to interpreting model predictions [EB/OL]. (2017-11-25)[2021-12-05].
|
25 |
ANNANE D, BELLISSANT E, CAVAILLON J M. Septic shock [J]. The lancet, 2005, 365(9453): 63–78. DOI: 10.1016/S0140-6736(04)17667-8
DOI
|
26 |
ASTIZ M E, RACKOW E C. Septic shock [J]. The lancet, 1998, 351(9114): 1501–1505. DOI: 10.1016/S0140-6736(98)01134-9
DOI
|
27 |
RIVERS E P, MCINTYRE L, MORRO D C, et al. Early and innovative interventions for severe sepsis and septic shock: taking advantage of a window of opportunity [J]. CMAJ, 2005, 173(9): 1054–1065. DOI: 10.1503/cmaj.050632
DOI
|