1 |
TALUKDER A, HAAS R. AIoT: AI meets IoT and web in smart healthcare [C]//13th ACM Web Science Conference 2021. ACM, 2021: 92–98. DOI: 10.1145/3462741.3466650
DOI
|
2 |
ALKHATIB S, WAYCOTT J, BUCHANAN G, et al. Privacy and the Internet of Things (IoT) monitoring solutions for older adults: a review [J]. Studies in health technology and informatics, 2018, 252: 8–14
|
3 |
LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions [J]. IEEE signal processing magazine, 2020, 37(3): 50–60. DOI: 10.1007/978-3-030-85559-8_13
DOI
|
4 |
NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for internet of things: a comprehensive survey [J]. IEEE communications surveys & tutorials, 2021, 23(3): 1622-1658. DOI: 10.1109/COMST.2021.3075439
DOI
|
5 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]//20th International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2017: 1273–1282. DOI: 10.48550/arXiv.1602.05629
DOI
|
6 |
SHAHID O, POURIYEH S, PARIZI R M, et al. Communication efficiency in federated learning: Achievements and challenges [EB/OL]. (2021-07-23)[2022-05-01].
|
7 |
CHAI Z, ALI A, ZAWAD S, et al. TiFL: a tier-based federated learning system [C]//29th International Symposium on High-Performance Parallel and Distributed Computing. ACM, 2020: 125–136. DOI: 10.1145/3369583.3392686
DOI
|
8 |
TAN Y, LONG G, LIU L, et al. Fedproto: federated prototype learning across heterogeneous clients [C]//AAAI Conference on Artificial Intelligence. AAAI, 2022: 8432–8440. DOI: 10.1609/aaai.v36i8.20819
DOI
|
9 |
THAPA C, CHAMIKARA M A P, CAMTEPE S, et al. Splitfed: when federated learning meets split learning [EB/OL]. (2022-02-16)[2022-05-01].
|
10 |
KONEČNÝ J, MCMAHAN H B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence [EB/OL]. (2016-10-08)[2022-05-01].
|
11 |
KHAN L U, SAAD W, HAN Z, et al. Federated learning for internet of things: recent advances, taxonomy, and open challenges [J]. IEEE communications surveys & tutorials, 2021, 23(3): 1759–1799. DOI: 10.1109/COMST.2021.3090430
DOI
|
12 |
WANG L, WANG W, LI B. CMFL: mitigating communication overhead for federated learning [C]//IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2019: 954–964. DOI: 10.1109/ICDCS.2019.00099
DOI
|
13 |
SATTLER F, WIEDEMANN S, MÜLLER K R, et al. Robust and communication-efficient federated learning from non-IID data [J]. IEEE transactions on neural networks and learning systems, 2019, 31(9): 3400–3413. DOI: 10.1109/TNNLS.2019.2944481
DOI
|
14 |
KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: strategies for improving communication efficiency [EB/OL]. (2017-10-30)[2022-05-01].
|
15 |
SURESH A T, FELIX X Y, KUMAR S, et al. Distributed mean estimation with limited communication [C]//International conference on machine learning. PMLR, 2017: 3329–3337. DOI: 10.48550/arXiv.1611.00429
DOI
|
16 |
CALDAS S, KONEČNY J, MCMAHAN H B, et al. Expanding the reach of federated learning by reducing client resource requirements [EB/OL]. (2019-01-08)[2022-05-01].
|
17 |
DEAN J, CORRADO G, MONGA R, et al. Large scale distributed deep networks [C]//25th International Conference on Neural Information Processing Systems, NIPS. 2012: 1223–1231
|
18 |
HUANG Y, CHENG Y, BAPNA A, et al. GPipe: efficient training of giant neural networks using pipeline parallelism [C]//33rd International Conference on Neural Information Processing Systems. NIPS, 2019: 103–112
|
19 |
JIANG L, WANG Y, ZHENG W, et al. LSTMSPLIT: Effective SPLIT Learning based LSTM on Sequential Time-Series Data [EB/OL]. (2022-03-08)[2022-05-01].
|
20 |
CHEN Y, SUN X, JIN Y. Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation [J]. IEEE transactions on neural networks and learning systems, 2019, 31(10): 4229–4238. DOI: 10.1109/TNNLS.2019.2953131
DOI
|
21 |
THAPA C, CHAMIKARA M A P, CAMTEPE S A. Advancements of federated learning towards privacy preservation: from federated learning to split learning [M]//Federated Learning Systems. Springer, Cham, 2021: 79–109
|
22 |
WANG W, FENG F, HE X, et al. Denoising implicit feedback for recommendation [C]//14th ACM International Conference on Web Search and Data Mining. ACM, 2021: 373–381. DOI: 10.1145/3437963.3441800
DOI
|
23 |
SINGH A, VEPAKOMMA P, GUPTA O, et al. Detailed comparison of communication efficiency of split learning and federated learning [EB/OL]. (2019-01-08)[2022-05-01].
|
24 |
WAINAKH A, VENTOLA F, MÜßIG T, et al. User-level label leakage from gradients in federated learning [J]. Proceedings on privacy enhancing technologies, 2022(2): 227–244. DOI: 10.2478/popets-2022-0043
DOI
|
25 |
KHOSRAVY M, NAKAMURA K, HIROSE Y, et al. Model inversion attack: Analysis under gray-box scenario on deep learning based face recognition system [J]. KSII transactions on internet and information systems (TIIS), 2021, 15(3): 1100–1118. DOI: 10.3837/tiis.2021.03.015
DOI
|