ZTE Communications ›› 2023, Vol. 21 ›› Issue (4): 91-103.DOI: 10.12142/ZTECOM.202304012
• Research Papers • Previous Articles Next Articles
ZOU Wenjie1, GU Chengming1, FAN Jiawei1, HUANG Cheng2,3(), BAI Yaxian2,3
Received:
2023-05-08
Online:
2023-12-25
Published:
2023-12-07
About author:
ZOU Wenjie received his BS and PhD degrees from Xidian University, China in 2009 and 2017, respectively. He is currently a lecturer with the Multimedia Communication Laboratory, Xidian University. His research interests include QoE, video quality assessment, and multimedia compression.Supported by:
ZOU Wenjie, GU Chengming, FAN Jiawei, HUANG Cheng, BAI Yaxian. Beyond Video Quality: Evaluation of Spatial Presence in 360-Degree Videos[J]. ZTE Communications, 2023, 21(4): 91-103.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202304012
BPP | Bitrate/(Mbit/s) | BPP | Bitrate/(Mbit/s) | ||
---|---|---|---|---|---|
720P (1 280×640) | 1080P (1 920×960) | 2K (2 160×1 080) | 4K (3 840×1 920) | ||
0.016 | 0.39 | 0.89 | 1.12 | 0.011 | 2.50 |
0.032 | 0.79 | 1.77 | 2.24 | 0.024 | 5.20 |
0.056 | 1.38 | 3.10 | 3.92 | 0.056 | 12.39 |
0.08 | 1.97 | 4.42 | 5.60 | 0.08 | 17.70 |
0.16 | 3.93 | 8.85 | 11.20 | 0.16 | 35.39 |
0.20 | 4.92 | 11.06 | 14.00 | 0.20 | 44.24 |
Table 1 Experimental setup
BPP | Bitrate/(Mbit/s) | BPP | Bitrate/(Mbit/s) | ||
---|---|---|---|---|---|
720P (1 280×640) | 1080P (1 920×960) | 2K (2 160×1 080) | 4K (3 840×1 920) | ||
0.016 | 0.39 | 0.89 | 1.12 | 0.011 | 2.50 |
0.032 | 0.79 | 1.77 | 2.24 | 0.024 | 5.20 |
0.056 | 1.38 | 3.10 | 3.92 | 0.056 | 12.39 |
0.08 | 1.97 | 4.42 | 5.60 | 0.08 | 17.70 |
0.16 | 3.93 | 8.85 | 11.20 | 0.16 | 35.39 |
0.20 | 4.92 | 11.06 | 14.00 | 0.20 | 44.24 |
File Name | Signal Type | File Name | Signal Type |
---|---|---|---|
FCODSB1.WAV | music | LCODPIP.WAV | music |
GCODCLA.WAV | music | NCODSFE.WAV | speech |
LCODHRP.WAV | music | KREFSME.WAV | speech |
Table 2 Experimental setup
File Name | Signal Type | File Name | Signal Type |
---|---|---|---|
FCODSB1.WAV | music | LCODPIP.WAV | music |
GCODCLA.WAV | music | NCODSFE.WAV | speech |
LCODHRP.WAV | music | KREFSME.WAV | speech |
No. | Video /(Mbit/s) | Audio / (kbit/s) | No. | Video /(Mbit/s) | Audio / (kbit/s) |
---|---|---|---|---|---|
S1 | 2 | 16 | S2 | 8 | 16 |
S1 | 8 | 32 | S2 | 18 | 32 |
S1 | 18 | 64 | S2 | 2 | 64 |
S1 | 18 | 16 | S3 | 2 | 32 |
S1 | 2 | 64 | S3 | 8 | 64 |
S1 | 4 | 128 | S3 | 18 | 128 |
S2 | 2 | 16 | S3 | 8 | 16 |
S2 | 8 | 64 | S3 | 18 | 32 |
S2 | 18 | 128 | S3 | 2 | 128 |
Table 3 Experimental setup
No. | Video /(Mbit/s) | Audio / (kbit/s) | No. | Video /(Mbit/s) | Audio / (kbit/s) |
---|---|---|---|---|---|
S1 | 2 | 16 | S2 | 8 | 16 |
S1 | 8 | 32 | S2 | 18 | 32 |
S1 | 18 | 64 | S2 | 2 | 64 |
S1 | 18 | 16 | S3 | 2 | 32 |
S1 | 2 | 64 | S3 | 8 | 64 |
S1 | 4 | 128 | S3 | 18 | 128 |
S2 | 2 | 16 | S3 | 8 | 16 |
S2 | 8 | 64 | S3 | 18 | 32 |
S2 | 18 | 128 | S3 | 2 | 128 |
Video Resolution | v4 | v5 |
---|---|---|
720P | 0.497 4 | 0.525 7 |
1080P | 0.529 2 | 1.369 0 |
2K | 0.537 1 | 4.584 0 |
4K | 0.497 4 | 16.580 0 |
Table 4 Values of v4 and v5
Video Resolution | v4 | v5 |
---|---|---|
720P | 0.497 4 | 0.525 7 |
1080P | 0.529 2 | 1.369 0 |
2K | 0.537 1 | 4.584 0 |
4K | 0.497 4 | 16.580 0 |
Video (BPP) | Audio/(kbit/s) |
---|---|
0.02 | 16, 64, 128, 256 |
0.06 | 16, 64, 128, 256 |
0.14 | 16, 64, 128, 256 |
0.19 | 16, 64, 128, 256 |
Table 5 Setup for the video
Video (BPP) | Audio/(kbit/s) |
---|---|
0.02 | 16, 64, 128, 256 |
0.06 | 16, 64, 128, 256 |
0.14 | 16, 64, 128, 256 |
0.19 | 16, 64, 128, 256 |
Video (BPP) | Audio/(kbit/s) |
---|---|
0.06 | 16, 64, 256 |
0.14 | 16, 64, 256 |
0.19 | 16, 64, 256 |
Table 6 Setup for the audio
Video (BPP) | Audio/(kbit/s) |
---|---|
0.06 | 16, 64, 256 |
0.14 | 16, 64, 256 |
0.19 | 16, 64, 256 |
Experiment | PCC | SROCC | RMSE |
---|---|---|---|
1 | 0.910 | 0.894 | 0.277 |
2 | 0.908 | 0.900 | 0.335 |
Table 7 Experimental results
Experiment | PCC | SROCC | RMSE |
---|---|---|---|
1 | 0.910 | 0.894 | 0.277 |
2 | 0.908 | 0.900 | 0.335 |
Experiment | Subject No. 1 | Subject No. 2 | Subject No. 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
PCC | SROCC | RMSE | PCC | SROCC | RMSE | PCC | SROCC | RMSE | |
1 | 0.882 | 0.878 | 0.443 | 0.926 | 0.922 | 0.227 | 0.908 | 0.902 | 0.282 |
2 | 0.886 | 0.881 | 0.462 | 0.924 | 0.918 | 0.214 | 0.904 | 0.898 | 0.343 |
Table 8 Model performance
Experiment | Subject No. 1 | Subject No. 2 | Subject No. 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
PCC | SROCC | RMSE | PCC | SROCC | RMSE | PCC | SROCC | RMSE | |
1 | 0.882 | 0.878 | 0.443 | 0.926 | 0.922 | 0.227 | 0.908 | 0.902 | 0.282 |
2 | 0.886 | 0.881 | 0.462 | 0.924 | 0.918 | 0.214 | 0.904 | 0.898 | 0.343 |
1 | DELOITTE. Digital democracy survey: a multi-generational view of consumer technology, media and telecom trends, digital democracy survey 9th edition [R]. 2022 |
2 | ZHU W H, ZHAI G T, TAO M X, et al. Quality of experience estimation of ultra‑high definition content [J]. ZTE technology journal, 2021, 27(1): 37–43. DOI: 10.12142/ZTETJ.202101009 |
3 | LI J L, ZHAO X, YANG Y. A review of interactive video quality assessment methods [J]. ZTE technology journal, 2021,27(1):44–47.DOI:10.12142/ZTETJ.202101010 |
4 | LOMBARD M, JONES M T. Defining presence [M]//Immersed in media. Cham: Springer International Publishing, 2015: 13–34. DOI: 10.1007/978-3-319-10190-3_2 |
5 | SCHUEMIE M J, VAN DER STRAATEN P, KRIJN M, et al. Research on presence in virtual reality: a survey [J]. CyberPsychology & behavior, 2001, 4(2): 183–201. DOI: 10.1089/109493101300117884 |
6 | SEO Y, KIM M, JUNG Y, et al. Avatar face recognition and self-presence [J]. Computers in human behavior, 2017, 69: 120–127. DOI: 10.1016/j.chb.2016.12.020 |
7 | FELTON W M, JACKSON R E. Presence: a review [J]. International journal of human-computer interaction, 2022, 38(1): 1–18. DOI: 10.1080/10447318.2021.1921368 |
8 | LOMBARD M, DITTON T. At the heart of it all: the concept of presence [J]. Journal of computer-mediated communication, 2006, 3(2). DOI: 10.1111/j.1083-6101.1997.tb00072.x |
9 | NORTH M M, NORTH S M. A comparative study of sense of presence of virtual reality and immersive environments [J]. Australasian journal of information systems, 2016, 20. DOI: 10.3127/ajis.v20i0.1168 |
10 | GONÇALVES G, MELO M, BARBOSA L, et al. Evaluation of the impact of different levels of self-representation and body tracking on the sense of presence and embodiment in immersive VR [J]. Virtual reality, 2022, 26(1): 1–14. DOI: 10.1007/s10055-021-00530-5 |
11 | SKARBEZ R, BROOKS Jr F P, WHITTON M C. A survey of presence and related concepts [J]. ACM computing surveys (CSUR), 2017, 50(6): 1–39. DOI: 10.1145/3134301 |
12 | LAARNI J, RAVAJA N, SAARI T, et al. Ways to measure spatial presence: review and future directions [M]//Immersed in media. Cham: Springer International Publishing, 2015: 139–185. DOI: 10.1007/978-3-319-10190-3_8 |
13 | AL-JUNDI H A, TANBOUR E Y. A framework for fidelity evaluation of immersive virtual reality systems [J].Virtual reality, 2022, 26(3): 1103–1122. DOI: 10.1007/s10055-021-00618-y |
14 | EGAN D, BRENNAN S, BARRETT J, et al. An evaluation of heart rate and electrodermal activity as an objective QoE evaluation method for immersive virtual reality environments [C]//Proc. 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2016: 1–6. DOI: 10.1109/QoMEX.2016.7498964 |
15 | CHESSA M, MAIELLO G, BORSARI A, et al. The perceptual quality of the oculus rift for immersive virtual reality [J]. Human-computer interaction, 2019, 34(1): 51–82. DOI: 10.1080/07370024.2016.1243478 |
16 | TERKILDSEN T, MAKRANSKY G. Measuring presence in video games: an investigation of the potential use of physiological measures as indicators of presence [J]. International journal of human-computer studies, 2019, 126: 64–80. DOI: 10.1016/j.ijhcs.2019.02.006 |
17 | GRASSINI S, LAUMANN K. Questionnaire measures and physiological correlates of presence: a systematic review [J]. Frontiers in psychology, 2020, 11: 349. DOI: 10.3389/fpsyg.2020.00349 |
18 | ZOU W J, YANG F Z, ZHANG W, et al. A framework for assessing spatial presence of omnidirectional video on virtual reality device [J]. IEEE access, 2018, 6: 44676–44684. DOI: 10.1109/ACCESS.2018.2864872 |
19 | WITMER B G, SINGER M J. Measuring presence in virtual environments: a presence questionnaire [J]. Presence: teleoperators and virtual environments, 1998, 7(3): 225–240. DOI: 10.1162/105474698565686 |
20 | LESSITER J, FREEMAN J, KEOGH E, et al. A cross-media presence questionnaire: the ITC-sense of presence inventory [J]. Presence: teleoperators and virtual environments, 2001, 10(3): 282–297. DOI: 10.1162/105474601300343612 |
21 | JENNETT C, COX A L, CAIRNS P, et al. Measuring and defining the experience of immersion in games [J]. International journal of human-computer studies, 2008, 66(9): 641–661. DOI: 10.1016/j.ijhcs.2008.04.004 |
22 | VORDERER P, WIRTH W, GOUVEIA F R, et al. MEC spatial presence questionnaire (MEC-SPQ): short documentation and instructions for application [R]. 2004 |
23 | CUMMINGS J J, WERTZ E E. Capturing social presence: Concept explication through an empirical analysis of social presence measures [J]. Journal of computer-mediated communication, 2022, 28(1): zmac027. DOI: 10.1093/jcmc/zmac027 |
24 | LIN J J W, DUH H B L, PARKER D E, et al. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment [C]//Proc. IEEE Virtual Reality. IEEE, 2002: 164–171. DOI: 10.1109/VR.2002.996519 |
25 | YU M, LAKSHMAN H, GIROD B. A framework to evaluate omnidirectional video coding schemes [C]//Proc. 2015 IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2015: 31–36. DOI: 10.1109/ISMAR.2015.12 |
26 | ZAKHARCHENKO V, CHOI K P, PARK J H. Quality metric for spherical panoramic video [C]//Proc. SPIE Optics and Photonics for Information Processing X. SPIE, 2016. DOI: 10.1117/12.2235885 |
27 | XU M, LI C, LIU Y F, et al. A subjective visual quality assessment method of panoramic videos [C]//Proc. 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017: 517–522. DOI: 10.1109/ICME.2017.8019351 |
28 | UPENIK E, ŘEŘÁBEK M, EBRAHIMI T. Testbed for subjective evaluation of omnidirectional visual content [C]//Proc. 2016 Picture Coding Symposium (PCS). IEEE, 2017: 1–5. DOI: 10.1109/PCS.2016.7906378 |
29 | SCHATZ R, SACKL A, TIMMERER C, et al. Towards subjective quality of experience assessment for omnidirectional video streaming [C]//Proc. Ninth International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 2017: 1–6. DOI: 10.1109/QoMEX.2017.7965657 |
30 | OZCINAR C, CABRERA J, SMOLIC A. Visual attention-aware omnidirectional video streaming using optimal tiles for virtual reality [J]. IEEE journal on emerging and selected topics in circuits and systems, 2019, 9(1): 217–230. DOI: 10.1109/JETCAS.2019.2895096 |
31 | GHAZNAVI-YOUVALARI R, ZARE A, AMINLOU A, et al. Shared coded picture technique for tile-based viewport-adaptive streaming of omnidirectional video [J]. IEEE transactions on circuits and systems for video technology, 2019, 29(10): 3106–3120. DOI: 10.1109/TCSVT.2018.2874179 |
32 | DUAN H Y, ZHAI G T, MIN X K, et al. Perceptual quality assessment of omnidirectional images [C]//IEEE International Symposium on Circuits and Systems (ISCAS). 2018: 1–5. DOI: 10.1109/ISCAS.2018.8351786 |
33 | XU M, LI C, CHEN Z Z, et al. Assessing visual quality of omnidirectional videos [J]. IEEE transactions on circuits and systems for video technology, 2019, 29(12): 3516–3530. DOI: 10.1109/TCSVT.2018.2886277 |
34 | ERMI L, MÄYRÄ F. Fundamental components of the gameplay experience: analysing immersion [C]//Digital Games Research Conference 2005, Changing Views: Worlds in Play. DBLP, 2005: 37–53 |
35 | SLATER M, WILBUR S. A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments [J]. Presence: teleoperators and virtual environments, 1997, 6(6): 603–616. DOI: 10.1162/pres.1997.6.6.603 |
36 | CUMMINGS J J, BAILENSON J N. How immersive is enough? A meta-analysis of the effect of immersive technology on user presence [J]. Media psychology, 2016, 19(2): 272–309. DOI: 10.1080/15213269.2015.1015740 |
37 | ZHAO J B, ALLISON R S, VINNIKOV M, et al. Estimating the motion-to-photon latency in head mounted displays [C]//Proc. 2017 IEEE Virtual Reality (VR). IEEE, 2017: 313–314. DOI: 10.1109/VR.2017.7892302 |
38 | ITU. Methods for the subjective assessment of video quality, audio quality and audiovisual quality of internet video and distribution quality television in any environment: recommendation P.913 [S]. 2021 |
39 | ASBUN E, HE Y, HE Y, et al. AHG8: interdigital test sequences for virtual reality video coding [R]. 2016 |
40 | SUN W, GUO R. Test sequences for virtual reality video coding from letinVR [R]. 2016 |
41 | MERCAT A, VIITANEN M, VANNE J. UVG dataset: 50/120 fps 4K sequences for video codec analysis and development [C]//Proc. ACM Multimedia Systems Conference. ACM, 2020: 297–302. DOI: 10.1145/3339825.3394937 |
42 | ITU. Methods for objective measurements of perceived audio quality: recommendation BS 13871 [S]. 2001 |
43 | BAILENSON J N, SWINTH K, HOYT C, et al. The independent and interactive effects of embodied-agent appearance and behavior on self-report, cognitive, and behavioral markers of copresence in immersive virtual environments [J]. Presence: teleoperators and virtual environments, 2005, 14(4): 379–393. DOI: 10.1162/105474605774785235 |
44 | OU Y F, MA Z, LIU T, et al. Perceptual quality assessment of video considering both frame rate and quantization artifacts [J]. IEEE transactions on circuits and systems for video technology, 2011, 21(3): 286–298. DOI: 10.1109/TCSVT.2010.2087833 |
45 | OU Y F, LIU T, ZHAO Z, et al. Modeling the impact of frame rate on perceptual quality of video [C]//Proc. 15th IEEE International Conference on Image Processing. IEEE, 2008: 689–692. DOI: 10.1109/ICIP.2008.4711848 |
46 | ZOU W J, YANG F Z, WAN S. Perceptual video quality metric for compression artefacts: from two-dimensional to omnidirectional [J]. IET image processing, 2018, 12(3): 374–381. DOI: 10.1049/iet-ipr.2017.0826 |
[1] | ZHOU Yingjie, ZHANG Zicheng, SUN Wei, MIN Xiongkuo, ZHAI Guangtao. Perceptual Quality Assessment for Point Clouds : A Survey [J]. ZTE Communications, 2023, 21(4): 3-16. |
[2] | DUAN Huiyu, ZHAI Guangtao, MIN Xiongkuo, ZHU Yucheng, FANG Yi, YANG Xiaokang. Perceptual Quality Assessment of Omnidirectional Images: Subjective Experiment and Objective Model Evaluation [J]. ZTE Communications, 2019, 17(1): 38-47. |
[3] | Ping Lu, Xia Jia, Hengliang Zhu, Ming Liu, Shouhong Ding, Lizhuang Ma. A Visual Lossless Image-Recompression Framework [J]. ZTE Communications, 2015, 13(2): 36-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||