1 |
EROL B, AMIN M G, BOASHASH B, et al. Wideband radar based fall motion detection for a generic elderly [C]//The 50th Asilomar Conference on Signals, Systems and Computers. IEEE, 2017: 1768–1772. DOI: 10.1109/ACSSC.2016.7869686
|
2 |
BIAN Z P, HOU J H, CHAU L P, et al. Fall detection based on body part tracking using a depth camera [J]. IEEE journal of biomedical and health informatics, 2015, 19(2): 430–439. DOI: 10.1109/JBHI.2014.2319372
|
3 |
STONE E E, SKUBIC M. Fall detection in homes of older adults using the microsoft kinect [J]. IEEE journal of biomedical and health informatics, 2015, 19(1): 290–301. DOI: 10.1109/JBHI.2014.2312180
|
4 |
KAU L J, CHEN C S. A smart phone-based pocket fall accident detection, positioning, and rescue system [J]. IEEE journal of biomedical and health informatics, 2015, 19(1): 44–56. DOI: 10.1109/JBHI.2014.2328593
|
5 |
PIERLEONI P, BELLI A, PALMA L, et al. A high reliability wearable device for elderly fall detection [J]. IEEE sensors journal, 2015, 15(8): 4544–4553. DOI: 10.1109/JSEN.2015.2423562
|
6 |
RAMEZANI R, XIAO Y B, NAEIM A. Sensing-Fi: Wi-Fi CSI and accelerometer fusion system for fall detection [C]//Proceedings of 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2018: 402–405. DOI: 10.1109/BHI.2018.8333453
|
7 |
FOROUGHI H, ASKI B S, POURREZA H. Intelligent video surveillance for monitoring fall detection of elderly in home environments [C]//The 11th International Conference on Computer and Information Technology. IEEE, 2009: 219–224. DOI: 10.1109/ICCITECHN.2008.4803020
|
8 |
JUDERAJENDRAN P, DALALI S. A smart and passive floor-vibration based-fall detector for elderly [C]//The 2nd International Conference on Information & Communication Technologies. IC-TTA, 2006. DOI: 10.1109/ICTTA.2006.1684511
|
9 |
HAN Y T, LI H, ZHU G X, et al. Indoor target detection and localization method based on WiFi [J]. ZTE technology journal. 2022, 27(5): 46–52. DOI: 10.12142/ZTETJ.202205009
|
10 |
LI F L, YANG W C, ZHANG X B. Design and application on collaborative networking scheme of 5G and WiFi6 [J]. ZTE technology journal. 2022, 27(4): 7–13. DOI: 10.12142/ZTETJ.202204003
|
11 |
ABDELNASSER H, YOUSSEF M, HARRAS K A. WiGest: A ubiquitous WiFi-based gesture recognition system [C]//IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015: 1472–1480. DOI: 10.1109/INFOCOM.2015.7218525
|
12 |
JIANG W J, MIAO C L, MA F L, et al. Towards environment independent device free human activity recognition [C]//The 24th Annual International Conference on Mobile Computing and Networking. ACM, 2018. DOI: 10.1145/3241539.3241548
|
13 |
KORANY B, KARANAM C R, CAI H, et al. XModal-ID: Using WiFi for through-wall person identification from candidate video footage [C]//The 25th Annual International Conference on Mobile Computing and Networking. ACM, 2019. DOI: 10.1145/3300061.3345437
|
14 |
ZENG Y Z, PATHAK P H, MOHAPATRA P. WiWho: WiFi-based person identification in smart spaces [C]//The 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 2016: 1–12. DOI: 10.1109/IPSN.2016.7460727
|
15 |
LI X, ZHANG D Q, LV Q, et al. IndoTrack: Device-free indoor human tracking with commodity Wi-Fi [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2017, 1(3): 1–22. DOI: 10.1145/3130940
|
16 |
XIE Y X, XIONG J, LI M, et al. mD-track: Leveraging multi-dimensionality for passive indoor Wi-Fi tracking [C]//The 25th Annual International Conference on Mobile Computing and Networking. ACM, 2019: 1–16. DOI: 10.1145/3300061.3300133
|
17 |
WANG Y X, WU K S, NI L M. WiFall: Device-free fall detection by wireless networks [J]. IEEE transactions on mobile computing, 2017, 16(2): 581–594. DOI: 10.1109/TMC.2016.2557792
|
18 |
WANG H, ZHANG D Q, WANG Y S, et al. RT-fall: A real-time and contactless fall detection system with commodity WiFi devices [J]. IEEE transactions on mobile computing, 2017, 16(2): 511–526. DOI: 10.1109/TMC.2016.2557795
|
19 |
ZHANG D Q, WANG H, WANG Y S, et al. Anti-fall: a non-intrusive and real-time fall detector leveraging CSI from commodity WiFi devices[C]//International Conference on Smart Homes and Health Telematics. Springer, 2015: 181–193.10.1007/978-3-319-19312-0_15
|
20 |
WANG Y C, YANG S, LI F, et al. FallViewer: A fine-grained indoor fall detection system with ubiquitous Wi-Fi devices [J]. IEEE Internet of Things journal, 2021, 8(15): 12455–12466. DOI: 10.1109/JIOT.2021.3063531
|
21 |
PALIPANA S, ROJAS D, AGRAWAL P, et al. FallDeFi: ubiquitous fall detection using commodity Wi-Fi devices [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies. ACM, 2019. DOI: 10.1145/3161183
|
22 |
ZHANG L, WANG Z R, YANG L. Commercial Wi-Fi based fall detection with environment influence mitigation [C]//The 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, 2019: 1–9. DOI: 10.1109/SAHCN.2019.8824989
|
23 |
NAKAMURA T, BOUAZIZI M, YAMAMOTO K, et al. Wi-Fi-CSI-based fall detection by spectrogram analysis with CNN [C]//IEEE Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM42002.2020.9322323
|
24 |
YANG Z, ZHOU Z M, LIU Y H. From RSSI to CSI: indoor localization via channel response [J]. ACM computing surveys, 46(2): 1–32. DOI: 10.1145/2543581.2543592
|
25 |
XIAO Y. IEEE 802.11n: Enhancements for higher throughput in wireless LANs [J]. IEEE wireless communications, 2005, 12(6): 82–91. DOI: 10.1109/MWC.2005.1561948
|
26 |
QIAN K, WU C S, ZHOU Z M, et al. Inferring motion direction using commodity Wi-Fi for interactive exergames [C]//The 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017: 1961–1972. DOI: 10.1145/3025453.3025678
|
27 |
GRIFFIN D, LIM J. Signal estimation from modified short-time Fourier transform [J]. IEEE transactions on acoustics, speech, and signal processing, 1984, 32(2): 236–243. DOI: 10.1109/TASSP.1984.1164317
|
28 |
WANG W, LIU A X, SHAHZAD M, et al. Understanding and modeling of WiFi signal based human activity recognition [C]//The 21st Annual International Conference on Mobile Computing and Networking. ACM, 2015: 65–76. DOI: 10.1145/2789168.2790093
|
29 |
SHENSA M J. The discrete wavelet transform: wedding the Atrous and Mallat algorithms [J]. IEEE transactions on signal processing, 1992, 40(10): 2464–2482. DOI: 10.1109/78.157290
|
30 |
NOBRE J, NEVES R F. Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets [J]. Expert systems with applications, 2019, 125: 181–194. DOI: 10.1016/j.eswa.2019.01.083
|
31 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. DOI: 10.1145/3065386
|
32 |
SHIN H C, ROTH H R, GAO M C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning [J]. IEEE transactions on medical imaging, 2016, 35(5): 1285–1298. DOI: 10.1109/TMI.2016.2528162
|