ZTE Communications ›› 2023, Vol. 21 ›› Issue (1): 3-14.DOI: 10.12142/ZTECOM.202301002
• Special Topic • Previous Articles Next Articles
XU Xinyi, LIU Shengli, YU Guanding()
Received:
2022-10-27
Online:
2023-03-25
Published:
2023-03-22
About author:
XU Xinyi received her BE degree in communication engineering from Zhejiang University, China in 2021. Now she is working towards her MS degree with the College of Information Science and Electronic Engineering, Zhejiang University. Her research interest focuses on federated learning.XU Xinyi, LIU Shengli, YU Guanding. Adaptive Retransmission Design for Wireless Federated Edge Learning[J]. ZTE Communications, 2023, 21(1): 3-14.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202301002
Learning Model | Loss Function |
---|---|
Linear regression | |
Least-squared support vector machine | |
Neural network |
Table 1 Loss function for popular machine learning models
Learning Model | Loss Function |
---|---|
Linear regression | |
Least-squared support vector machine | |
Neural network |
Parameters | Values |
---|---|
Path loss model | |
Transmission power of the edge server | 33 dBm |
Transmission power of device | 28 dBm |
Additive white Gaussian noise power | -174 dBm/Hz |
Bandwidth of downlink | 10 MHz |
Quantization bit of each element | 16 |
Number of devices | 10 |
Bandwidth of uplink | 10 MHz |
CRC code | 32 |
Table 2 Simulation parameters
Parameters | Values |
---|---|
Path loss model | |
Transmission power of the edge server | 33 dBm |
Transmission power of device | 28 dBm |
Additive white Gaussian noise power | -174 dBm/Hz |
Bandwidth of downlink | 10 MHz |
Quantization bit of each element | 16 |
Number of devices | 10 |
Bandwidth of uplink | 10 MHz |
CRC code | 32 |
1 | ZHANG T, GAO L, HE C Y, et al. Federated learning for the Internet of Things: applications, challenges, and opportunities [J]. IEEE Internet of Things magazine, 2022, 5(1): 24–29. DOI: 10.1109/IOTM.004.2100182 |
2 | GUO F X, YU F R, ZHANG H L, et al. Enabling massive IoT toward 6G: a comprehensive survey [J]. IEEE Internet of Things journal, 2021, 8(15): 11891–11915. DOI: 10.1109/JIOT.2021.3063686 |
3 | MOHAMMADI F G, SHENAVARMASOULEH F, ARABNIA H R. Applications of machine learning in healthcare and Internet of Things (IOT): a comprehensive review [EB/OL]. [2022-10-10]. |
4 | VERBRAEKEN J, WOLTING M, KATZY J, et al. A survey on distributed machine learning [J]. ACM computing surveys, 2021, 53(2): 1–33. DOI: 10.1145/3377454 |
5 | MAJEED I A, KAUSHIK S, BARDHAN A, et al. Comparative assessment of federated and centralized machine learning [EB/OL]. [2022-10-10]. |
6 | GUPTA R, ALAM T. Survey on federated-learning approaches in distributed environment [J]. Wireless personal communications, 2022, 125(2): 1631–1652. DOI: 10.1007/s11277-022-09624-y |
7 | JIANG Y L, ZHANG K, QIAN Y, et al. Anonymous and efficient authentication scheme for privacy-preserving distributed learning [J]. IEEE transactions on information forensics and security, 2022, 17: 2227–2240. DOI: 10.1109/TIFS.2022.3181848 |
8 | TRELEAVEN P, SMIETANKA M, PITHADIA H. Federated learning: the pioneering distributed machine learning and privacy-preserving data technology [J]. Computer, 2022, 55(4): 20–29. DOI: 10.1109/MC.2021.3052390 |
9 | LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions [J]. IEEE signal processing magazine, 2020, 37(3): 50–60. DOI: 10.1109/MSP.2020.2975749 |
10 | LIU J, HUANG J Z, ZHOU Y, et al. From distributed machine learning to federated learning: A survey [J]. Knowledge and information systems, 2022, 64(4): 885–917. DOI: 10.1007/s10115-022-01664-x |
11 | ALEDHARI M, RAZZAK R, PARIZI R M, et al. Federated learning: a survey on enabling technologies, protocols, and applications [J]. IEEE access: practical innovations, open solutions, 2020, 8: 140699–140725. DOI: 10.1109/access.2020.3013541 |
12 | ABREHA H G, HAYAJNEH M, SERHANI M A. Federated learning in edge computing: a systematic survey [J]. Sensor, 2022, 22(2): 450. DOI: 10.3390/s22020450 |
13 | LIM W Y B, LUONG N C, HOANG D T, et al. Federated learning in mobile edge networks: a comprehensive survey [J]. IEEE communications surveys & tutorials, 2020, 22(3): 2031–2063. DOI: 10.1109/COMST.2020.2986024 |
14 | NGUYEN D C, PHAM Q V, PATHIRANA P N, et al. Federated learning for smart healthcare: a survey [J]. ACM computing surveys, 2023, 55(3): 1–37. DOI: 10.1145/3501296 |
15 | ZHENG Z H, ZHOU Y Z, SUN Y L, et al. Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges [J]. Connection science, 2022, 34(1): 1–28. DOI: 10.1080/09540091.2021.1936455 |
16 | YANG Z H, CHEN M Z, SAAD W, et al. Energy efficient federated learning over wireless communication networks [J]. IEEE transactions on wireless communications, 2021, 20(3): 1935–1949. DOI: 10.1109/TWC.2020.3037554 |
17 | CHEN M Z, YANG Z H, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks [J]. IEEE transactions on wireless communications, 2021, 20(1): 269–283. DOI: 10.1109/TWC.2020.3024629 |
18 | NADEEM F, LI Y H, VUCETIC B, et al. Analysis and optimization of HARQ for URLLC [C]//IEEE Globecom Workshops. IEEE, 2022: 1–6. DOI: 10.1109/GCWkshps52748.2021.9682028 |
19 | JIANG P W, WEN C K, JIN S, et al. Deep source-channel coding for sentence semantic transmission with HARQ [J]. IEEE transactions on communications, 2022, 70(8): 5225–5240. DOI: 10.1109/TCOMM.2022.3180997 |
20 | SHIRVANIMOGHADDAM M, SALARI A, GAO Y F, et al. Federated learning with erroneous communication links [J]. IEEE communications letters, 2022, 26(6): 1293–1297. DOI: 10.1109/LCOMM.2022.3167094 |
21 | SALARI A, SHIRVANIMOGHADDAM M, VUCETIC B, et al. Rate-convergence tradeoff of federated learning over wireless channel [EB/OL]. [2022-10-10]. |
22 | YE H, LIANG L, LI G Y. Decentralized federated learning with unreliable communications [J]. IEEE journal of selected topics in signal processing, 2022, 16(3): 487–500. DOI: 10.1109/JSTSP.2022.3152445 |
23 | JEONG E, ZECCHIN M, KOUNTOURIS M. Asynchronous decentralized learning over unreliable wireless networks [EB/OL]. [2022-10-10]. |
24 | LI Z D, ZHOU Y J, WU D P, et al. Fairness-aware federated learning with unreliable links in resource-constrained Internet of Things [J]. IEEE Internet of Things journal, 2022, 9(18): 17359–17371. DOI: 10.1109/JIOT.2022.3156046 |
25 | MAO Y Z, ZHAO Z H, YANG M L, et al. SAFARI: sparsity enabled federated learning with limited and unreliable communications [EB/OL]. [2022-10-10]. |
26 | SALEHI M, HOSSAIN E. Federated learning in unreliable and resource-constrained cellular wireless networks [J]. IEEE transactions on communications, 2021, 69(8): 5136–5151. DOI: 10.1109/TCOMM.2021.3081746 |
27 | JIANG Z H, YU G D, CAI Y L, et al. Decentralized edge learning via unreliable device-to-device communications [J]. IEEE transactions on wireless communications, 2022, 21(11): 9041–9055. DOI: 10.1109/TWC.2022.3172147 |
28 | NADEEM F, LI Y H, VUCETIC B, et al. HARQ optimization for real-time remote estimation in wireless networked control [EB/OL]. [2022-10-10]. |
29 | SHAH S W H, RAHMAN M M U, MIAN A N, et al. Effective capacity analysis of HARQ-enabled D2D communication in multi-tier cellular networks [J]. IEEE transactions on vehicular technology, 2021, 70(9): 9144–9159. DOI: 10.1109/TVT.2021.3100675 |
30 | LIU D Z, ZHU G X, ZENG Q S, et al. Wireless data acquisition for edge learning: data-importance aware retransmission [J]. IEEE transactions on wireless communications, 2021, 20(1): 406–420. DOI: 10.1109/TWC.2020.3024980 |
31 | SIMONSSON A, FURUSKAR A. Uplink power control in LTE - overview and performance, subtitle: principles and benefits of utilizing rather than compensating for SINR variations [C]//IEEE 68th Vehicular Technology Conference. IEEE, 2008: 1–5. DOI: 10.1109/VETECF.2008.317 |
32 | XI Y, BURR A, WEI J B, et al. A general upper bound to evaluate packet error rate over quasi-static fading channels [J]. IEEE transactions on wireless communications, 2011, 10(5): 1373–1377. DOI: 10.1109/TWC.2011.012411.100787 |
[1] | JIANG Zhihui, HE Yinghui, YU Guanding. Joint User Selection and Resource Allocation for Fast Federated Edge Learning [J]. ZTE Communications, 2020, 18(2): 20-30. |
[2] | HUANG He, LIU Yang, LIU Zhuang, HAN Jiren, GAO Yin. Mechanism of Fast Data Retransmission in CU-DU Split Architecture of 5G NR [J]. ZTE Communications, 2018, 16(3): 40-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||