1 |
3GPP. Study on new radio (NR) to support non terrestrial networks: 3GPP TR 38.811 [S]. 2018
|
2 |
GKIZELI M, TAFAZOLLI R, EVANS B. Modeling handover in mobile satellite diversity based systems [C]//The 54th Vehicular Technology Conference. Atlantic City, USA: IEEE, 2001: 131–135. DOI: 10.1109/VTC.2001.956570
DOI
|
3 |
DEL RE E, FANTACCI R, GIAMBENE G. Handover queuing strategies with dynamic and fixed channel allocation techniques in low Earth orbit mobile satellite systems [J]. IEEE transactions on communications, 1999, 47(1): 89–102. DOI: 10.1109/26.747816
DOI
|
4 |
DEL RE E, FANTACCI R, GIAMBENE G. Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks [J]. IEEE journal on selected areas in communications, 1995, 13(2): 397–405. DOI: 10.1109/49.345884
DOI
|
5 |
WU Z F, JIN F L, LUO J X, et al. A graph-based satellite handover framework for LEO satellite communication networks [J]. IEEE communications letters, 2016, 20(8): 1547–1550. DOI: 10.1109/LCOMM.2016.2569099
DOI
|
6 |
YAJNANARAYANA V, RYDÉN H, HÉVIZI L. 5G handover using reinforcement learning [C]//IEEE 3rd 5G World Forum (5GWF). Bangalore, India: IEEE. 2020: 349–354. DOI: 10.1109/5GWF49715.2020.9221072
DOI
|
7 |
CHEN Y, LIN X Q, KHAN T, et al. Efficient drone mobility support using reinforcement learning [C]//IEEE Wireless Communications and Networking Conference (WCNC). Seoul, South Korea: IEEE, 2020: 1–6. DOI: 10.1109/WCNC45663.2020.9120595
DOI
|
8 |
CHEN M T, ZHANG Y, TENG Y L, et al. Reinforcement learning based signal quality aware handover scheme for LEO satellite communication networks [M]//Human Centered Computing. Cham: Springer International Publishing, 2019: 44–55. DOI: 10.1007/978-3-030-37429-7_5
DOI
|
9 |
ALKHATEEB A, BELTAGY I, ALEX S. Machine learning for reliable mmwave systems: Blockage prediction and proactive handoff [C]//IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim, USA: IEEE, 2018: 1055–1059. DOI: 10.1109/GlobalSIP.2018.8646438
DOI
|
10 |
ALJERI N, BOUKERCHE A. An efficient handover trigger scheme for vehicular networks using recurrent neural networks [C]//The 15th ACM International Symposium on QoS and Security for Wireless and Mobile Networks. New York, USA: ACM. 2019: 85–91. DOI: 10.1145/3345837.3355963
DOI
|
11 |
3GPP. Solutions for NR to support non-terrestrial networks (NTN): 3GPP TR 38.821 [S]. 2019
|
12 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. DOI: 10.1109/5.726791
DOI
|
13 |
3GPP. On beam layout definition for NTN system level simulations [EB/OL]. [2021-04-16].
|