ZTE Communications ›› 2021, Vol. 19 ›› Issue (2): 53-60.DOI: 10.12142/ZTECOM.202102007
• Review • Previous Articles Next Articles
TAN Jie1,2, SHA Xiubin1,2(), DAI Bo1,2, LU Ting1,2
Received:
2021-02-01
Online:
2021-06-25
Published:
2021-07-27
About author:
TAN Jie received his M.S. from Nanjing University of Posts and Telecommunications, China. He has been engaged in 3GPP standard pre-research for NR and IIoT TSN technology at ZTE Corporation since 2019.|SHA Xiubin (TAN Jie, SHA Xiubin, DAI Bo, LU Ting. Analysis of Industrial Internet of Things and Digital Twins[J]. ZTE Communications, 2021, 19(2): 53-60.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202102007
Use case | Communication service availability: target value | Transfer interval: target value | Jitter |
---|---|---|---|
Motion control | 99.999% to 99.99999% | 500 μs | <50% of E-to-E latency |
100 Mbit/s wired-to-wireless link replacement | 99.9999% to 99.999999% | ≤1 ms | |
Mobile robots | > 99.9999% | 1 ms to 50 ms | < Transfer interval |
Mobile control panels: remote control of assembly robots, milling machines, etc. | 99.9999% to 99.999999% | 4 ms to 8 ms | < 50% of interval |
Mobile operation panel: motion control | 99.999999% | 1 ms | |
Robotic aided surgery | > 99.999999% | 1 ms | |
Robotic aided diagnosis | > 99.999% | 1 ms |
Table 1 Communication service performance requirements
Use case | Communication service availability: target value | Transfer interval: target value | Jitter |
---|---|---|---|
Motion control | 99.999% to 99.99999% | 500 μs | <50% of E-to-E latency |
100 Mbit/s wired-to-wireless link replacement | 99.9999% to 99.999999% | ≤1 ms | |
Mobile robots | > 99.9999% | 1 ms to 50 ms | < Transfer interval |
Mobile control panels: remote control of assembly robots, milling machines, etc. | 99.9999% to 99.999999% | 4 ms to 8 ms | < 50% of interval |
Mobile operation panel: motion control | 99.999999% | 1 ms | |
Robotic aided surgery | > 99.999999% | 1 ms | |
Robotic aided diagnosis | > 99.999% | 1 ms |
1 |
SISINNI E, SAIFULLAH A, HAN S, et al. Industrial Internet of Things: challenges, opportunities, and directions [J]. IEEE transactions on industrial informatics, 2018, 14(11): 4724–4734. DOI: 10.1109/TII.2018.2852491
DOI URL |
2 |
TAYEB S, LATIFI S, KIM Y. A survey on IoT communication and computation frameworks: an industrial perspective [C]//IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). Las Vegas, USA: IEEE, 2017: 1–6. DOI: 10.1109/CCWC.2017.7868354
DOI URL |
3 |
CHEN B T, WAN J F, LAN Y T, et al. Improving cognitive ability of edge intelligent IIoT through machine learning [J]. IEEE network, 2019, 33(5): 61–67. DOI: 10.1109/MNET.001.1800505
DOI URL |
4 |
SAVAZZI S, RAMPA V, SPAGNOLINI U. Wireless cloud networks for the factory of things: connectivity modeling and layout design [J]. IEEE Internet of Things journal, 2014, 1(2): 180–195. DOI: 10.1109/JIOT.2014.2313459
DOI URL |
5 |
MUMTAZ S, ALSOHAILY A, PANG Z B, et al. Massive Internet of Things for industrial applications: addressing wireless IIoT connectivity challenges and ecosystem fragmentation [J]. IEEE industrial electronics magazine, 2017, 11(1): 28–33. DOI: 10.1109/MIE.2016.2618724
DOI URL |
6 |
PERERA C, LIU C H, JAYAWARDENA S. The emerging Internet of Things marketplace from an industrial perspective: a survey [J]. IEEE transactions on emerging topics in computing, 2015, 3(4): 585–598. DOI: 10.1109/TETC.2015.2390034
DOI URL |
7 |
BELLAGENTE P, FERRARI P, FLAMMINI A, et al. Enabling PROFINET devices to work in IoT: characterization and requirements [C]//IEEE International Instrumentation and Measurement Technology Conference Proceedings. Taiwan, China: IEEE, 2016: 1–6. DOI: 10.1109/I2MTC.2016.7520417
DOI URL |
8 |
SAUTER T, LOBASHOV M. How to access factory floor information using Internet technologies and gateways [J]. IEEE transactions on industrial informatics, 2011, 7(4): 699–712. DOI: 10.1109/TII.2011.2166788
DOI URL |
9 |
BARTOLOMEU P, ALAM M, FERREIRA J, et al. Supporting deterministic wireless communications in industrial IoT [J]. IEEE transactions on industrial informatics, 2018, 14(9): 4045–4054. DOI: 10.1109/TII.2018.2825998
DOI URL |
10 |
QIU T, ZHANG Y S, QIAO D J, et al. A robust time synchronization scheme for industrial Internet of Things [J]. IEEE transactions on industrial informatics, 2018, 14(8): 3570–3580. DOI: 10.1109/TII.2017.2738842
DOI URL |
11 |
KOUTSIAMANIS R A, PAPADOPOULOS G Z, FAFOUTIS X, et al. From best effort to deterministic packet delivery for wireless industrial IoT networks [J]. IEEE transactions on industrial informatics, 2018, 14(10): 4468–4480. DOI: 10.1109/TII.2018.2856884
DOI URL |
12 |
SAEZ M, MATURANA F P, BARTON K, et al. Realtime manufacturing machine and system performance monitoring using Internet of Things [J]. IEEE transactions on automation science and engineering, 2018, 15(4): 1735–1748. DOI: 10.1109/TASE.2017.2784826
DOI URL |
13 |
FUCHS S, SCHMIDT H P, WITTE S. Test and online monitoring of realtime Ethernet with mixed physical layer for Industry 4.0 [C]//IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). Berlin, Germany: IEEE, 2016: 1–4. DOI: 10.1109/ETFA.2016.7733518
DOI URL |
14 |
RAZA U, KULKARNI P, SOORIYABANDARA M. Low power wide area networks: an overview [J]. IEEE communications surveys & tutorials, 2017, 19(2): 855–873. DOI: 10.1109/COMST.2017.2652320
DOI URL |
15 |
IQBAL Z, KIM K, LEE H N. A cooperative wireless sensor network for indoor industrial monitoring [J]. IEEE transactions on industrial informatics, 2017, 13(2): 482–491. DOI: 10.1109/TII.2016.2613504
DOI URL |
16 |
SHIN S, KWON T, JO G Y, et al. An experimental study of hierarchical intrusion detection for wireless industrial sensor networks [J]. IEEE transactions on industrial informatics, 2010, 6(4): 744–757. DOI: 10.1109/TII.2010.2051556
DOI URL |
17 |
MAGRIN D, CENTENARO M, VANGELISTA L. Performance evaluation of LoRa networks in a smart city scenario [C]//IEEE International Conference on Communications (ICC). Paris, France: IEEE, 2017: 1–7. DOI: 10.1109/ICC.2017.7996384
DOI URL |
18 | YANG S X, GAO Y H, ZHANG X, et al. 5G NRmutiplexing eMBB and URLLC [J]. Telecom engineering technics and standardization, 2018, 31(8): 23–28 |
19 | 3GPP. Study on scenarios and requirements for next generation access technologies (release 14): 3GPP. TR 38.913 [S]. 2016 |
20 |
NIELSEN J J, LIU R K, POPOVSKI P. Ultrareliable low latency communication using interface diversity [J]. IEEE transactions on communications, 2018, 66(3): 1322–1334. DOI: 10.1109/TCOMM.2017.2771478
DOI URL |
21 |
SHE C Y, YANG C Y, QUEK T Q S. Crosslayer optimization for ultrareliable and lowlatency radio access networks [J]. IEEE transactions on wireless communications, 2018, 17(1): 127–141. DOI:10.1109/TWC.2017.2762684
DOI URL |
22 |
TAKEYA M, KAWAMURA Y, KATSURA S. Data reduction design based on deltasigma modulator in quantized scalingbilateral control for realizing of haptic broadcasting [J]. IEEE transactions on industrial electronics, 2016, 63(3): 1962–1971. DOI: 10.1109/TIE.2015.2512233
DOI URL |
23 |
SINGH B, TIRKKONEN O, LI Z X, et al. Contention based access for ultrareliable low latency uplink transmissions [J]. IEEE wireless communications letters, 2018, 7(2): 182–185. DOI: 10.1109/LWC.2017.2763594
DOI URL |
24 | 3GPP. Service requirements for cyberphysical control applications in vertical domains: 3GPP TS 22.104 [S]. 2019 |
25 | 3GPP. Study on communication for automation in vertical domains: 3GPP TS 22.804 [S]. 2018 |
26 | XU S, XIN J. Study on 5G URLLC enhancement technology for ultrareliable and low latency communications [J]. Mobile communications, 2019, 43(9): 62–67 |
27 | 3GPP TSG RAN WG1. Evaluation of URLLC factory automation scenario at 30 GHz: Meeting#96 R11903448 [R]. Sophia Antipolis, France: 3GPP, 2019 |
28 | 3GPP. Physical channels and modulation (Release 16): 3GPP TS 38.211 [S]. 2020 |
29 | 3GPP TSGRAN. Revised SID:Study on NR Industrial Internet of Things (IoT): Meeting#81 RP182090 [R]. SophiaAntipolis, France: 3GPP, 2018 |
30 | IEEE. IEEE standard for local and metropolitan area networks bridges and bridged networks amendment 25: enhancements for scheduled traffic: 802.1Qbv [S]. 2015 |
31 | 3GPP. Radio resource control (RRC) protocol specification (Release 16): 3GPP TS 38.331 [S]. 2020 |
[1] | FU Shousai, ZHANG Hesheng, CHEN Jinghe. Time Sensitive Networking Technology Overview and Performance Analysis [J]. ZTE Communications, 2018, 16(4): 57-64. |
[2] | Sai Shankar N, Debashis Dash, Hassan El Madi, and Guru Gopalakrishnan. WiGig and IEEE 802.11ad for Multi-Gigabyte-Per-Second WPAN and WLAN [J]. ZTE Communications, 2012, 10(4): 13-22. |
[3] | Christine Perey. Open Augmented Reality Standards: Current Activities in Standards-Development Organizations [J]. ZTE Communications, 2012, 10(3): 39-46. |
[4] | Ping Wu and Ming Li. Introduction to the High-Efficiency Video Coding Standard [J]. ZTE Communications, 2012, 10(2): 2-8. |
[5] | Li Deyi, Chen Guisheng, Zhang Haisu. Analysis of Hot Topics in Cloud Computing [J]. ZTE Communications, 2010, 8(4): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||