ZTE Communications ›› 2021, Vol. 19 ›› Issue (1): 39-47.DOI: 10.12142/ZTECOM.202101006
• Special Topic • Previous Articles Next Articles
WU Huici(), LI Hanjie, TAO Xiaofeng
Received:
2021-01-29
Online:
2021-03-25
Published:
2021-04-09
About author:
WU Huici (Supported by:
WU Huici, LI Hanjie, TAO Xiaofeng. Green Air-Ground Integrated Heterogeneous Network in 6G Era[J]. ZTE Communications, 2021, 19(1): 39-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202101006
1 |
ZHANG Z Q, XIAO Y, MA Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies [J]. IEEE vehicular technology magazine, 2019, 14(3): 28–41. DOI: 10.1109/MVT.2019.2921208
DOI |
2 | F⁃Cell technology from Nokia Bell Labs revolutionizes small cell deployment by cutting wires, costs and time [EB/OL]. (2016⁃10⁃03)[2020⁃12⁃09]. |
3 | Launches world’s first EE 4G “AIR MAST” to connect red bull foxhunt mountain bike even in rural wales [EB/OL]. (2017⁃10⁃11)[2020⁃12⁃09]. |
4 | FirstNet reaches over 1 million connections [EB/OL]. (2019⁃12⁃03)[2020⁃12⁃09]. |
5 |
ZHOU D, GAO S, LIU R Q, et al. Overview of development and regulatory aspects of high altitude platform system [J]. Intelligent and converged networks, 2020, 1(1): 58–78. DOI: 10.23919/ICN.2020.0004
DOI |
6 |
AL⁃HOURANI A, KANDEEPAN S, LARDNER S. Optimal LAP altitude for maximum coverage [J]. IEEE wireless communications letters, 2014, 3(6): 569–572. DOI: 10.1109/LWC.2014.2342736
DOI |
7 | WIREN R. 5G and UAV use cases [EB/OL]. (2017⁃09⁃18)[2020⁃12⁃09]. |
8 |
SHARMA V, BENNIS M, KUMAR R. UAV⁃assisted heterogeneous networks for capacity enhancement [J]. IEEE communications letters, 2016, 20(6): 1207–1210. DOI: 10.1109/LCOMM.2016.2553103
DOI |
9 |
QIU J F, GRACE D, DING G R, et al. Air⁃ground heterogeneous networks for 5G and beyond via integrating high and low altitude platforms [J]. IEEE wireless communications, 2019, 26(6): 140–148. DOI: 10.1109/MWC.0001.1800575
DOI |
10 |
HWANG M H, CHA H R, JUNG S Y. Practical endurance estimation for minimizing energy consumption of multirotor unmanned aerial vehicles [J]. Energies, 2018, 11(9): 2221. DOI: 10.3390/en11092221
DOI |
11 | 3GPP. Technical Specification Group Radio Access Network; Study on Enhanced LTE Support for Aerial Vehicles: TR36.777 [R]. Sophia⁃Antipolis, France: 3GPP, 2017. |
12 |
CHRIKI A, TOUATI H, SNOUSSI H, et al. Centralized cognitive radio based frequency allocation for UAVs communication [C]//15th International Wireless Communications & Mobile Computing Conference (IWCMC). Tangier, Morocco: IEEE, 2019: 1674–1679. DOI: 10.1109/IWCMC.2019.8766481
DOI |
13 |
WANG G Y, LIU Y J, QI X Y. Study on the propagation characteristics of 28GHz radio wave in outdoor microcellular [C]//Asia⁃Pacific Microwave Conference (APMC). Nanjing, China: IEEE, 2015: 1–3. DOI: 10.1109/APMC.2015.7413403
DOI |
14 |
AHMED B, POTA H R, GARRATT M. Flight control of a rotary wing UAV using backstepping [J]. International journal of robust and nonlinear control, 2010, 20(6): 639–658. DOI: 10.1002/rnc.1458
DOI |
15 |
CHOI H S, LEE S, RYU H, et al. Dynamics and simulation of the effects of wind on UAVs and airborne wind measurement [J]. Transactions of the Japan society for aeronautical and space sciences, 2015, 58(4): 187–192. DOI: 10.2322/tjsass.58.187
DOI |
16 |
WU H C, WEN Y, ZHANG J Z, et al. Energy⁃efficient and secure air⁃to⁃ground communication with jittering UAV [J]. IEEE transactions on vehicular technology, 2020, 69(4): 3954–3967. DOI: 10.1109/TVT.2020.2971520
DOI |
17 |
MUNOZ R, VILALTA R, CASELLAS R, et al. Integrated SDN/NFV management and orchestration architecture for dynamic deployment of virtual SDN control instances for virtual tenant networks [J]. IEEE/OSA journal of optical communications and networking, 2015, 7(11): B62–B70. DOI: 10.1364/JOCN.7.000B62
DOI |
18 |
XILOURIS G K, BATISTATOS M C, ATHANASIADOU G E, et al. UAV⁃assisted 5G network architecture with slicing and virtualization [C]//IEEE Globecom Workshops (GC Wkshps). Abu Dhabi, United Arab Emirates: IEEE, 2018: 1–7. DOI: 10.1109/GLOCOMW.2018.8644408
DOI |
19 |
WHITE K J S, DENNEY E, KNUDSON M D, et al. A programmable SDN+NFV⁃based architecture for UAV telemetry monitoring [C]//14th IEEE Annual Consumer Communications & Networking Conference (CCNC). Las Vegas, USA: IEEE, 2017: 522–527. DOI: 10.1109/CCNC.2017.7983162
DOI |
20 |
HERMOSILLA A, ZARCA A M, BERNABE J B, et al. Security orchestration and enforcement in NFV/SDN⁃aware UAV deployments [J]. IEEE access, 2020, 8: 131779–131795. DOI: 10.1109/ACCESS.2020.3010209
DOI |
21 |
HERMOSILLA A, ZARCA A M, BERNABE J B, et al. Security orchestration and enforcement in NFV/SDN⁃aware UAV deployments [J]. IEEE access, 2020, 8: 131779–131795. DOI:10.1109/ACCESS.2020.3010209
DOI |
22 |
NIE Y W, ZHAO J H, LIU J, et al. Energy⁃efficient UAV trajectory design for backscatter communication: a deep reinforcement learning approach [J]. China communications, 2020, 17(10): 129–141. DOI: 10.23919/JCC.2020.10.009
DOI |
23 |
LIU T, CUI M, ZHANG G C, et al. 3D trajectory and transmit power optimization for UAV⁃enabled multi⁃link relaying systems [J]. IEEE transactions on green communications and networking, 8135, PP(99):1. DOI:10.1109/TGCN.2020.3048135
DOI |
24 |
YIN S X, ZHAO Y F, LI L H, et al. UAV⁃assisted cooperative communications with power⁃splitting information and power transfer [J]. IEEE transactions on green communications and networking, 2019, 3(4): 1044–1057. DOI: 10.1109/TGCN.2019.2926131
DOI |
25 |
WANG Y S, HONG Y W P, CHEN W T. Trajectory learning, clustering, and user association for dynamically connectable UAV base stations [J]. IEEE transactions on green communications and networking, 2020, 4(4): 1091–1105. DOI: 10.1109/TGCN.2020.3005290
DOI |
26 |
LV Z, HAO J J, GUO Y J. Energy minimization for MEC⁃enabled cellular⁃connected UAV: trajectory optimization and resource scheduling [C]//IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Toronto, Canada: IEEE, 2020: 478–483. DOI: 10.1109/INFOCOMWKSHPS50562.2020.9162853
DOI |
27 |
SUN X, ANSARI N. Green cloudlet network: a distributed green mobile cloud network [J]. IEEE network, 2017, 31(1): 64–70. DOI: 10.1109/MNET.2017.1500293NM
DOI |
28 |
WANG Y T, SU Z, ZHANG N, et al. Learning in the air: secure federated learning for UAV⁃assisted crowdsensing [J]. IEEE transactions on network science and engineering, 4385, PP(99):1. DOI: 10.1109/TNSE.2020.3014385
DOI |
29 |
CHEN Z, MA X Y, ZHANG B, et al. A survey on terahertz communications [J]. China communications, 2019, 16(2): 1–35. DOI: 10.12676/j.cc.2019.02.001
DOI |
30 |
WU Q Q, ZHANG R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network [J]. IEEE communications magazine, 2020, 58(1): 106–112. DOI: 10.1109/MCOM.001.1900107
DOI |
31 |
SONG D, SHIN W, LEE J. A maximum throughput design for wireless powered communications networks with IRS⁃NOMA [J]. IEEE wireless communications letters, 6722, PP(99):1. DOI: 10.1109/LWC.2020.3046722
DOI |
32 |
ZHOU F S, YOU C S, ZHANG R. Delay⁃optimal scheduling for IRS⁃aided mobile edge computing [J]. IEEE wireless communications letters, 2189, PP(99):1. DOI: 10.1109/LWC.2020.3042189
DOI |
33 |
FANG S S, CHEN G J, LI Y H. Joint optimization for secure intelligent reflecting surface assisted UAV networks [J]. IEEE wireless communications letters, 2021, 10(2): 276–280. DOI: 10.1109/LWC.2020.3027969
DOI |
34 |
MOHAMED Z, AISSA S. Leveraging UAVs with intelligent reflecting surfaces for energy⁃efficient communications with cell⁃edge users [C]//IEEE International Conference on Communications Workshops (ICC Workshops). Dublin, Ireland: IEEE, 2020: 1–6. DOI: 10.1109/iccworkshops49005.2020.9145273
DOI |
35 |
ZHANG J Z, CHEN Y, LIU Y X, et al. Spectrum knowledge and real⁃time observing enabled smart spectrum management [J]. IEEE access, 2020, 8: 44153–44162. DOI: 10.1109/ACCESS.2020.2978005
DOI |
36 |
ZHANG Y Y, FANG Z J. Dynamic double threshold spectrum sensing algorithm based on block chain [C]//3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). Xiamen, China: IEEE, 2019: 1090–1095. DOI: 10.1109/EITCE47263.2019.9094864
DOI |
37 |
SUN X L, YANG W W, CAI Y M, et al. Physical layer security in millimeter wave SWIPT UAV⁃based relay networks [J]. IEEE access, 2019, 7: 35851–35862. DOI: 10.1109/ACCESS.2019.2904856
DOI |
38 |
LIU J X, XIONG K, LU Y, et al. Energy efficiency in secure IRS⁃aided SWIPT [J]. IEEE wireless communications letters, 2020, 9(11): 1884–1888. DOI: 10.1109/LWC.2020.3006837
DOI |
39 | WEBB M. Smart 2020: enabling the low carbon economy in the information age [R]. London, UK: The Climate Group, 2008. |
40 | ITU⁃T. Greenhouse gas emissions trajectories for the information and communication technology sector compatible with the UNFCCC paris agreement: L.1470 [R]. 2020 |
41 | Verizon NEBSTM Compliance: Energy Efficiency Requirements for Telecommunications [EB/OL]. (2009⁃08⁃07)[2020⁃12⁃09]. |
42 |
GANDOTRA P, JHA R K, JAIN S. Green communication in next generation cellular networks: a survey [J]. IEEE access, 2017, 5: 11727–11758. DOI: 10.1109/ACCESS.2017.2711784
DOI |
43 | Huawei Technology Co., Ltd. 5G power white paper [R]. Shenzhen, China: Huawei, 2019 |
44 | Daiwa Capital Markets. Asia mobile communication: let’s talk about 5G [R]. Hong Kong, China: Daiwa Capital Markets Hong Kong Limited, 2018 |
45 |
BERARDINELLI G, MOGENSEN P, ADEOGUN R O. 6G subnetworks for life⁃critical communication [C]//2nd 6G Wireless Summit (6G SUMMIT). Levi, Finland: IEEE, 2020: 1–5. DOI:10.1109/6GSUMMIT49458.2020.9083877
DOI |
46 |
ZENG Q T, SUN Q, CHEN G, et al. Traffic prediction of wireless cellular networks based on deep transfer learning and cross⁃domain data [J]. IEEE access, 2020, 8: 172387–172397. DOI: 10.1109/ACCESS.2020.3025210
DOI |
47 |
ZHANG M Y, FU H H, LI Y, et al. Understanding urban dynamics from massive mobile traffic data [J]. IEEE transactions on big data, 2019, 5(2): 266–278. DOI: 10.1109/TBDATA.2017.2778721
DOI |
48 | Cisco. Cisco annual internet report [R]. San Jose, USA: Cisco Systems, Inc., 2020 |
49 | Cisco. Cisco visual networking index (VNI) complete forecast update [R]. San Jose, USA: Cisco Systems, Inc., 2018 |
50 | FRIEDLI M, KAUFMANN L, PAGANINI F, et al. Energy efficiency of the internet of things [R]. Luzern, Switzerland: Lucerne University of Applied Sciences, 2016 |
51 | Enerdata. Portugal energy report [R]. Grenoble, France: Enerdata, 2020 |
52 | FAA. FAA aerospace forecast fiscal years 2020⁃2040 [R]. Washington DC, USA: Federal Aviation Administration, 2020 |
53 |
BERTRAN E, SÀNCHEZ⁃CERDÀ A. On the tradeoff between electrical power consumption and flight performance in fixed⁃wing UAV autopilots [J]. IEEE transactions on vehicular technology, 2016, 65(11): 8832–8840. DOI:10.1109/TVT.2016.2601927
DOI |
54 |
BOON M A, DRIJFHOUT A P, TESFAMICHAEL S. Comparison of a fixed⁃wing and multi⁃rotor UAV for environmental mapping applications: A case study [J]. ISPRS⁃international archives of the photogrammetry, remote sensing and spatial information sciences, 2017, XLII⁃2/W6: 47–54. DOI: 10.5194/isprs-archives-xlii-2-w6-47-2017
DOI |
55 | CHAN C W, KAM T Y. A procedure for power consumption estimation of multi⁃rotor unmanned aerial vehicle [C]//Journal of Physics: Conference Series, Volume1509, 10th Asian⁃Pacific Conference on Aerospace Technology and Science & 4th Asian Joint Symposium on Aerospace Engineering (APCATS’2019 /AJSAE’2019). Bristol, UK: IOP Publishing, 2020, 1509(1): 012015 |
56 |
ABEYWICKRAMA H V, JAYAWICKRAMA B A, HE Y, et al. Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance [J]. IEEE access, 2018, 6: 58383–58394. DOI: 10.1109/ACCESS.2018.2875040
DOI |
57 |
ZENG Y, ZHANG R. Energy⁃efficient UAV communication with trajectory optimization [J]. IEEE transactions on wireless communications, 2017, 16(6): 3747–3760. DOI: 10.1109/TWC.2017.2688328
DOI |
58 |
ZENG Y, XU J, ZHANG R. Energy minimization for wireless communication with rotary⁃wing UAV [J]. IEEE transactions on wireless communications, 2019, 18(4): 2329–2345. DOI: 10.1109/TWC.2019.2902559
DOI |
59 |
HU Y L, YUAN X P, XU J, et al. Optimal 1D trajectory design for UAV⁃enabled multiuser wireless power transfer [J]. IEEE transactions on communications, 2019, 67(8): 5674–5688. DOI: 10.1109/TCOMM.2019.2911294
DOI |
60 |
AHMED S, CHOWDHURY M Z, JANG Y M. Energy⁃efficient UAV relaying communications to serve ground nodes [J]. IEEE communications letters, 2020, 24(4): 849–852. DOI: 10.1109/LCOMM.2020.2965120
DOI |
61 |
YANG D C, WU Q Q, ZENG Y, et al. Energy tradeoff in ground⁃to⁃UAV communication via trajectory design [J]. IEEE transactions on vehicular technology, 2018, 67(7): 6721–6726. DOI: 10.1109/TVT.2018.2816244
DOI |
62 |
HUA M, WANG Y, LI C G, et al. Energy⁃efficient optimization for UAV⁃aided cellular offloading [J]. IEEE wireless communications letters, 2019, 8(3): 769–772. DOI: 10.1109/LWC.2019.2891727
DOI |
63 |
LI Z Y, HAO J L, LIU J, et al. An IoT⁃applicable access control model under double⁃layer blockchain [J]. IEEE transactions on circuits and systems II: Express briefs, 5031, PP(99):1. DOI: 10.1109/TCSII.2020.3045031
DOI |
[1] | YANG Bei, LIANG Xin, LIU Shengnan, JIANG Zheng, ZHU Jianchi, SHE Xiaoming. Intelligent 6G Wireless Network with Multi-Dimensional Information Perception [J]. ZTE Communications, 2023, 21(2): 3-10. |
[2] | LU Haitao, YAN Xincheng, ZHOU Qiang, DAI Jiulong, LI Rui. Key Intrinsic Security Technologies in 6G Networks [J]. ZTE Communications, 2022, 20(4): 22-31. |
[3] | WANG Pengfei, SONG Wei, SUN Geng, WEI Zongzheng, ZHANG Qiang. Air-Ground Integrated Low-Energy Federated Learning for Secure 6G Communications [J]. ZTE Communications, 2022, 20(4): 32-40. |
[4] | HOU Xiaolin, LI Xiang, WANG Xin, CHEN Lan, SUYAMA Satoshi. Some Observations and Thoughts about Reconfigurable Intelligent Surface Application for 5G Evolution and 6G [J]. ZTE Communications, 2022, 20(1): 14-20. |
[5] | YUAN Yifei, GU Qi, WANG Anna, WU Dan, LI Ya. Recent Progress in Research and Development of Reconfigurable Intelligent Surface [J]. ZTE Communications, 2022, 20(1): 3-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||