ZTE Communications ›› 2018, Vol. 16 ›› Issue (3): 30-39.DOI: 10.19729/j.cnki.1673-5188.2018.03.006
• Special Topic • Previous Articles Next Articles
JIN Yichao, WEN Yonggang
Online:
2018-08-25
Published:
2020-03-18
About author:
JIN Yichao (yjin3@ntu.edu.sg) received the B.S and M.S degree from Nanjing University of Posts and Telecommunications (NUPT), China, in 2008 and 2011 respectively, and Ph.D degree from School of Computer Science and Engineering, Nanyang Technological University (NTU), Singapore, in 2016. His research interests are cloud computing and multimedia network.|WEN Yonggang (ygwen@ntu.edu.sg) is an associate professor with School of Computer Science and Engineering at Nanyang Technological University, Singapore. He received his PhD degree in Electrical Engineering and Computer Science (minor in Western Literature) from Massachusetts Institute of Technology (MIT), Cambridge, USA. Previously he has worked in Cisco to lead product development in content delivery network, which had a revenue impact of 3 Billion US dollars globally. Dr. Wen has published over 150 papers in top journals and prestigious conferences. His research interests include cloud computing, green data center, big data analytics, multimedia network and mobile computing.
JIN Yichao, WEN Yonggang. When Machine Learning Meets Media Cloud: Architecture, Application and Outlook[J]. ZTE Communications, 2018, 16(3): 30-39.
Regression | Decision tree | Bayesian network | PCA | Q-learning | Deep learning | |
---|---|---|---|---|---|---|
Power predict and control | [ | [ | ||||
Failure predict and operate | [ | [ | [ | |||
VM configure and consolidate | [ | [ |
Table 1 Mapping between machine learning methods and cloud infrastructure services for each literature work
Regression | Decision tree | Bayesian network | PCA | Q-learning | Deep learning | |
---|---|---|---|---|---|---|
Power predict and control | [ | [ | ||||
Failure predict and operate | [ | [ | [ | |||
VM configure and consolidate | [ | [ |
Regression | Bayesian network | K-means | PCA | Affinity propagation | Q-learning | Deep learning | |
---|---|---|---|---|---|---|---|
Content recommendation | [ | [ | [ | [ | [ | ||
Content prefetching | [ | [ | [ | [ | |||
Media data adaptation | [ |
Table 2 Mapping between machine learning methods and cloud platform services for each literature work
Regression | Bayesian network | K-means | PCA | Affinity propagation | Q-learning | Deep learning | |
---|---|---|---|---|---|---|---|
Content recommendation | [ | [ | [ | [ | [ | ||
Content prefetching | [ | [ | [ | [ | |||
Media data adaptation | [ |
[1] | Cisco. ( 2017). Cisco visual networking index: Forecast and methodology, 2016-2021 [Online] . Available: |
[2] | W. Zhu, C. Luo, J. Wang, S. Li , “Multimedia cloud computing,” IEEE Signal Processing Magazine, vol. 28, no.3,pp. 59-69, May 2011. doi: 10.1109/MSP.2011.940269. |
[3] | M. Tan and X. Su , “Media cloud: when media revolution meets rise of cloud computing,” in IEEE 6th International Symposium on Service Oriented System Engineering (SOSE), Irvine, USA, 2011, pp. 251-261. doi: 10.1109/SOSE.2011.6139114. |
[4] | Y. Xu and S. Mao , “A survey of mobile cloud computing for rich media applications,” IEEE Wireless Communications, vol. 20, no.3,pp. 46-53, Jun. 2013. doi: 10.1109/MWC.2013.6549282. |
[5] | Y. Wen, X. Zhu, J. Rodrigues, C. Chen , “Cloud mobile media: Reflections and outlook,” IEEE Transactions on Multimedia, vol. 16, no.4,pp. 885-902, Jun. 2014. doi: 10.1109/TMM.2014.2315596. |
[6] | S. Marsland , Machine Learning:An Algorithmic Perspective. Boca Raton, USA: CRC Press, 2015. |
[7] | W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld , “Face recogni- tion: A literature survey,” ACM computing surveys, vol. 35, no. 4, pp. 399-458, 2003. |
[8] | R. Poppe , “A survey on vision-based human action recognition,” Image and vision computing, vol.28, no. 6, pp. 976-990, 2010. |
[9] | M. Wang and X.-S. Hua,, “Active learning in multimedia annotation and retrieval: a survey,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 2 article no. 10, Feb. 2011. doi: 10.1145/1899412.1899414. |
[10] | W. Hu, N. Xie, L. Li, X. Zeng, S. Maybank , “A survey on visual content-based video indexing and retrieval,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 41, no.6,pp. 797-819, Nov. 2011. doi: 10.1109/TSMCC.2011.2109710. |
[11] | L. Deng and X. Li,, “Machine learning paradigms for speech recognition: an overview,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no.5,pp. 1060-1089, May 2013. doi: 10.1109/TASL.2013.2244083. |
[12] | L. A. Barroso, J. Clidaras, U. Holzle , “The datacenter as a computer: an introduction to the design of warehouse-scale machines,” Synthesis Lectures on Computer Architecture, vol. 8, no. 3, pp. 1-154, 2013. |
[13] | W. Zhang, Y. Wen, Y. Wong, K. Toh , C.-H. Chen, “Towards joint optimization over ict and cooling systems in data centre: a survey,” IEEE Communica tions Surveys and Tutorials , vol. 18, no . 3, pp. 1596-1616, 2016. doi: 10.1109/COMST.2016.2545109. |
[14] | M. Isard , “Autopilot: automatic data center management,” ACM SIGOPS Operating Systems Review, vol. 41, no.2,pp. 60-67, Apr. 2007. doi: 10.1145/1243418.1243426. |
[15] | P. Barham, B. Dragovic, K. Fraser , et al., “Xen and the art of virtualization,” in ACM Symposium on Operating Systems Principles , New York, USA, 2003. |
[16] | S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson , “Container-based operating system virtualization: a scalable, high- performance alternative to hypervisors,” ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 275-287, 2007. doi: 10.1145/1272996.1273025. |
[17] | A. Tatar ,M. D. de Amorim, S. Fdida, and P. Antoniadis, “A survey on predicting the popularity of web content,” Journal of Internet Services and Applications, vol. 5, no. 1, pp. 1-20, 2014. doi: 10.1186/s13174-014-0008-y. |
[18] | F. Xia, N. Y. Asabere, A. M. Ahmed, J. Li, X. Kong , “Mobile multimedia recommendation in smart communities: a survey,” IEEE Access, vol. 1, pp. 606-624, Sept. 2013. doi: 10.1109/ACCESS.2013.2281156. |
[19] | S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement strategies,” ACM Computing Surveys, vol. 35, no. 4, pp. 374-398, 2003. |
[20] | J. Famaey, F. Iterbeke, T. Wauters, F. De Turck , “Towards a predictive cache replacement strategy for multimedia content,” Journal of Network and Computer Applications, vol. 36, no. 1, pp. 219-227, 2013. doi: 10.1016/j.jnca.2012.08.014. |
[21] | I. Ahmad, X. Wei, Y. Sun ,Y.-Q. Zhang. , Video transcoding: an overview of various techniques and research issues,” IEEE Transactions on multimedia, vol. 7, no.5,pp. 793-804, Oct. 2005. doi: 10.1109/TMM.2005.854472. |
[22] | Y. Chen, K. Wu, Q. Zhang , “From QoS to QoE: a tutorial on video quality assessment,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 1126-1165, 2015. doi: 10.1109/COMST.2014.2363139. |
[23] | M. K. Saini, R. Gadde, S. Yan, W. T. Ooi , “Movimash: online mobile video mashup,” in Proc. 20th ACM International Conference on Multimedia, Nara, Japan, 2012, pp. 139-148. |
[24] | M. Avgerinou, P. Bertoldi, L. Castellazzi , “Trends in data centre energy consumption under the european code of conduct for data centre energy efficiency,” Energies , vol. 10, no.10, p. 1470, 2017. |
[25] | J. Choi, S. Govindan, B. Urgaonkar, A. Sivasubramaniam , “Pro- filing, prediction, and capping of power consumption in consolidated environments,” in IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems, Baltimore, USA, 2008, pp. 1-10. doi: 10.1109/MASCOT.2008.4770558. |
[26] | A. W. Lewis, S. Ghosh ,N.-F. Tzeng, “Run-time energy consumption estimation based on workload in server systems,” HotPower, vol. 8, pp. 17-21, 2008. |
[27] | G. Dhiman, K. Mihic, T. Rosing , “A system for online power prediction in virtualized environments using gaussian mixture models,” in ACM/IEEE 47th Design Automation Conference (DAC), Anaheim, USA, 2010, pp. 807-812. doi: 10.1145/1837274.1837478. |
[28] | J. Gao , “Machine learning applications for data center optimization, ” Google White Paper, 2014. |
[29] | Y. Li, H. Hu, Y. Wen, J. Zhang , “Learning-based power prediction for data centre operations via deep neural networks,” in Proc. 5th International Workshop on Energy Efficient Data Centres, Waterloo, Canada, 2016, pp. 1-10. doi: 10.1145/2940679.2940685. |
[30] | D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, T. Adeshiyan , “Vigilant: out-of-band detection of failures in virtual machines,” ACM SIGOPS Operating Systems Review, vol. 42, no.1,pp. 26-31, Jan. 2008. |
[31] | S. Fu , “Performance metric selection for autonomic anomaly detection on cloud computing systems,” in IEEE Global Telecommunications Conference (GLOBECOM 2011), Kathmandu, Nepal, 2011, pp. 1-5. doi: 10.1109/GLOCOM.2011.6134532. |
[32] | Q. Guan, Z. Zhang, S. Fu , “Ensemble of bayesian predictors and decision trees for proactive failure management in cloud computing systems,” Journal of Communications, vol. 7, no. 1, pp. 52-61, 2012. doi: 10.4304/jcm.7.1.52-61. |
[33] | J. J. Prevost, K. Nagothu, B. Kelley, M. Jamshidi , “Prediction of cloud data center networks loads using stochastic and neural models,” in IEEE International Conference on System of Systems Engineering (SoSE), Albuquerque, USA, 2011, pp. 276-281. doi: 10.1109/SYSOSE.2011.5966610. |
[34] | X. Chen ,C.-D. Lu, and K. Pattabiraman, “Failure prediction of jobs in compute clouds: A google cluster case study,” in IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Naples, Italy, 2014, pp. 341-346. doi: 10.1109/ISSREW.2014.105. |
[35] | B. Zhu, G. Wang, X. Liu , et al., “Proactive drive failure prediction for large scale storage systems,” in IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST), Long Beach, USA, 2013, pp. 1-5. doi: 10.1109/MSST.2013.6558427. |
[36] | S. Sohrabi, A. Tang, I. Moser, A. Aleti , “Adaptive virtual machine migration mechanism for energy efficiency,” in Proc. 5th International Workshop on Green and Sustainable Software, Austin, USA, 2016, pp. 8-14. doi: 10.1145/2896967.2896969. |
[37] | Z. Li, C. Yan, X. Yu, N. Yu , “Bayesian network-based virtual machines consolidation method,” Future Generation Computer Systems, vol. 69, pp. 75-87, 2017. doi: 10.1016/j.jnca.2016.03.002 |
[38] | G.K. Shyam .and S. S. Manvi, “Virtual resource prediction in cloud environment: a bayesian approach,” Journal of Network and Computer Applications, vol. 65, pp. 144-154, Apr. 2016. |
[39] | S.S. .Masoumzadeh and H. Hlavacs, “Integrating VM selection criteria in distributed dynamic VM consolidation using fuzzy q-learning,” in IEEE International Conference on Network and Service Management (CNSM), Zurich, Switzerland, 2013, pp. 332-338. doi: 10.1109/CNSM.2013.6727854. |
[40] | Y. Jin, Y. Wen, H. Hu , “Minimizing monetary cost via cloud clone migration in multi-screen cloud social tv system,” in IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, 2013, pp. 1747-1752. doi: 10.1109/GLOCOM.2013.6831326. |
[41] | Y. Jin, Y. Wen, H. Hu, M. Montpetit , “Reducing operational costs in cloud social TV: an opportunity for cloud cloning,” IEEE Transactions on Multimedia, vol. 16, no.6,pp. 1739-1751, Oct. 2014. doi: 10.1109/TMM.2014.2329370. |
[42] | N. Liu, Z. Li, J. Xu , et al. ( 2017, Mar.13). A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning [Online]. Available: |
[43] | M. Cha, H. Kwak, P. Rodriguez ,Y.-Y. Ahn, and S. Moon , “I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system,” in Proc. 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, USA, 2007, pp. 1-14. doi: 10.1145/1298306.1298309. |
[44] | G. Szabo and B. A. Huberman, “Predicting the popularity of online content,” Communications of the ACM, vol. 53, no. 8, pp. 80-88, 2010. |
[45] | Y. Borghol, S. Ardon, N. Carlsson, D. Eager, A. Mahanti , “The untold story of the clones: content-agnostic factors that impact youtube video popularity,” in Proc. 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012, pp. 1186-1194. doi: 10.1145/2339530.2339717. |
[46] | W. Chuand S.-T. Park, “Personalized recommendation on dynamic content using predictive bilinear models,” in Proc. 18th International Conference on World Wide Web, Madrid, Spain, 2009, pp. 691-700. doi: 10.1145/1526709.1526802. |
[47] | M. Ahmed, S. Spagna, F. Huici, S. Niccolini , “A peek into the future: Predicting the evolution of popularity in user generated content,” in Proc. Sixth ACM International Conference on Web search and Data Mining, Rome, Italy, 2013, pp. 607-616. doi: 10.1145/2433396.2433473. |
[48] | X. Ma, H. Wang, H. Li, J. Liu, H. Jiang , “Exploring sharing patterns for video recommendation on youtube-like social media,” Multimedia Systems, vol. 20, no. 6, pp. 675-691, 2014. doi: 10.1007/s00530-013-0309-1. |
[49] | P. Covington, J. Adams, E. Sargin , “Deep neural networks for youtube recommendations,” in Proc. 10th ACM Conference on Recommender Systems, Boston, USA, 2016, pp. 191-198. doi: 10.1145/2959100.2959190. |
[50] | G. Pallis and A. Vakali, “Insight and perspectives for content delivery networks,” Communications of the ACM, vol. 49, no. 1, pp. 101-106, 2006. |
[51] | P. Venketesh, R. Venkatesan, L. Arunprakash , “Semantic web prefetching scheme using naïve bayes classifier,” International Journal of Computer Science and Applications, vol. 7, no. 1, pp. 66-78, 2010. |
[52] | W. Ali, S. M. Shamsuddin, A. S. Ismail , “Intelligent naıve bayes- based approaches for web proxy caching,” Knowledge-Based Systems, vol. 31, pp. 162-175, 2012. |
[53] | T. Yan, D. Chu, D. Ganesan, A. Kansal, J. Liu , “Fast app launching for mobile devices using predictive user context,” in Proc. 10th International Conference on Mobile Systems, Applications, and Services, Low Wood Bay, UK, 2012, pp. 113-126. doi: 10.1145/2307636.2307648. |
[54] | H. Hu, Y. Wen , T.-S. Chua, et al.,“Joint content replication and request routing for social video distribution over cloud CDN: a community clustering method,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no.7,pp. 1320-1333, Jul. 2016. doi: 10.1109/TCSVT.2015.2455712. |
[55] | W. Hu, Y. Jin, Y. Wen, Z. Wang, L. Sun , “Towards wi-fi AP-assisted content prefetching for on-demand TV series: a learning-based approach,” IEEE Transactions on Circuits and Systems for Video Tech- nology, vol.28, no. 7, pp.1665-1676 , Jul. 2017. doi: 10.1109/TCSVT.2017.2684302. |
[56] | M. Covell, M. Arjovsky, Y.-C. Lin, A. Kokaram, “Optimizing transcoder quality targets using a neural network with an embedded bitrate model,” Electronic Imaging , vol. 2016, no. 2, pp. 1-7, 2016. doi: 10.2352/ISSN.2470-1173.2016.2.VIPC-237. |
[57] | P. P. Dash, A. Mishra, A. Wong . (2016, Sept. 22). Deep quality: a deep no-reference quality assessment system [Online]. Available: |
[58] | H. Zhang, H. Hu, G. Gao, Y. Wen, K. Guan . ( 2018,Apr.10). Deepqoe: a unified framework for learning to predict QoE [Online]. Available: |
[59] | V. D’Alessandro, B. Park, L. Romano , et al., “Scalable network traffic classification using distributed support vector machines,” in IEEE 8th International Conference on Cloud Computing (CLOUD), New York, USA, 2015, pp. 1008-1012. doi: 10.1109/CLOUD.2015.138. |
[60] | L. Vu, C. T. Bui, Q. U. Nguyen , “A deep learning based method for handling imbalanced problem in network traffic classification,” in Proc. Eighth International Symposium on Information and Communication Technology, Nha Trang, Vietnam, 2017, pp. 333-339. |
[61] | J. Ran, X. Kong, G. Lin, D. Yuan, H. Hu , “A self-adaptive network traffic classification system with unknown flow detection,” in 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017, pp. 1215-1220. |
[62] | J. Hochst, L. Baumgartner, M. Hollick, B. Freisleben , “Unsupervised traffic flow classification using a neural autoencoder,” in IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, Singapore, 2017, pp. 523-526. doi: 10.1109/LCN.2017.57. |
[63] | Y. Jin and Y. Wen, “When cloud media meets network function virtualization: challenges and applications,” IEEE MultiMedia, vol. 24, no. 3, pp. 72-82, 2017. doi: 10.1109/MMUL.2017.3051519. |
[64] | H. Jagadish, J. Gehrke, A. Labrinidis , et al., “Big data and its technical challenges,” Communications of the ACM, vol. 57, no. 7, pp. 86-94, 2014. doi: 10.1145/2611567. |
[1] | CHEN Jiajun, GAO Yin, LIU Zhuang, LI Dapeng. Future Vision on Artificial Intelligence Assisted Green Energy Efficiency Network [J]. ZTE Communications, 2023, 21(2): 34-39. |
[2] | AWADA Uchechukwu, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi. Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing [J]. ZTE Communications, 2023, 21(2): 40-52. |
[3] | ZHAO Zipiao, ZHAO Yongli, YAN Boyuan, WANG Dajiang. Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning [J]. ZTE Communications, 2022, 20(S1): 7-15. |
[4] | NAN Yucen, FANG Minghao, ZOU Xiaojing, DOU Yutao, Albert Y. ZOMAYA. A Collaborative Medical Diagnosis System Without Sharing Patient Data [J]. ZTE Communications, 2022, 20(3): 3-16. |
[5] | LIU Zhuang, GAO Yin, LI Dapeng, CHEN Jiajun, HAN Jiren. Enabling Energy Efficiency in 5G Network [J]. ZTE Communications, 2021, 19(1): 20-29. |
[6] | Julian AHRENS, Lia AHRENS, Hans D. SCHOTTEN. A Machine Learning Method for Prediction of Multipath Channels [J]. ZTE Communications, 2019, 17(4): 12-18. |
[7] | LIU Jianwei, YUAN Yifei, HAN Jing. A Case Study on Intelligent Operation System for Wireless Networks [J]. ZTE Communications, 2019, 17(4): 19-26. |
[8] | HAN Bin, Hans D. SCHOTTEN. Machine Learning for Network Slicing Resource Management:A Comprehensive Survey [J]. ZTE Communications, 2019, 17(4): 27-32. |
[9] | XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim TAFAZOLLI, Terence DODGSON. To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design [J]. ZTE Communications, 2019, 17(4): 3-11. |
[10] | Mohammed SEID, Stephen ANOKYE, SUN Guolin. Machine Learning Based Unmanned Aerial Vehicle Enabled Fog-Radio Aerial Vehicle Enabled Fog-Radio Access Network and Edge Computing [J]. ZTE Communications, 2019, 17(4): 33-45. |
[11] | Zöchmann Erich. A Framework for Active Learning of Beam Alignment in Vehicular Millimeter Wave Communications by Onboard Sensors [J]. ZTE Communications, 2019, 17(2): 2-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||